Computer Assisted Cytological Medical Image Analysis

计算机辅助细胞学医学图像分析

基本信息

  • 批准号:
    RGPIN-2014-04929
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research leverages advances in Pattern Recognition, Image Processing, Computational Geometry and Machine Learning to develop novel solutions to address problems in the area of Medical Imaging. Specifically, I am furthering my research on Computer Aided Medical Diagnosis for cytological imagery of breast cancer fine needle biopsies, and of thin blood smears for malaria detection. For these types of cytological images, my long term objective is to develop robust, accessible, rapid, and accurate Medical Diagnosis tools to provide an automatic independent second opinion, to help avoid errors/oversights, to Pathologists, Clinicians and Medical Specialists, or act as an expert system to aid the non-specialist medical practitioner. The process of computer-assisted medical diagnosis or malignancy grading can be described in two main stages: feature extraction from medical imagery and classification of the imagery with respect to specific medical issues. One objective of the proposed work is the determination of improved feature sets for specific types of cytological images. Many of the frequently used features used for medical image classification problems require accurate image segmentation prior to determining these features. Therefore, I am studying approaches to improve the accuracy and speed of the segmentation of cells in cytological images by extending my previous work ranging from the use of the Hough transform to using active contours models, to incorporate effective use of texture, per-pixel classifiers, and shape modeling. We are also extending this research to the accurate segmentation of new medical imaging technologies such as very large full slide virtual images, 3D images, and images created with extended focal imaging (EFI). Another objective of the proposed research is to improve the accuracy of the malignancy classification in cytological images of breast cancer fine needle biopsies. Specifically, we study the problems of malignancy diagnosis to determine whether the slide is malignant or benign, and of malignancy grading where we use the Bloom-Richardson malignancy grading. To accomplish this, with optimized feature sets, we will develop systems of classifiers that improve sensitivity rates, particularly with minimal rates of false negatives. Since the classifiers have to work in a clinical setting, we will adapt the classifiers to do automatic parameter tuning. The third objective of the proposed research is to improve the detection of malaria parasites in cytological images of blood smear slides. Building on our previous complete blood count framework, we will develop a computer-assisted malaria detection system to determine the presence of malaria and return accurate infection counts per RBC counts in thick blood smears; and to differentiate between the four species of the malarial parasite in thin blood smears. We will develop systems of classifiers with improved sensitivity rates. My work in Health Informatics contributes to the larger trend in medical imagery to develop computer assisted medical diagnosis tools to complement and facilitate the work of Clinicians and Pathologists. All developments are designed to use commonly available microscopy and computing resources. For example, in the rural areas of malaria stricken countries there are frequently no specialists to do microscopic screening of blood slides for malaria. Through the automatic analysis of these slides, the computer assisted expert systems proposed in my research would help fill the knowledge gap between a specialist with the necessary expertise and the practitioner actually examining cytological slides, thus leading to better patient care.
提出的研究利用了模式识别,图像

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fevens, Thomas其他文献

Computer-Aided Breast Cancer Diagnosis Based on the Analysis of Cytological Images of Fine Needle Biopsies
  • DOI:
    10.1109/tmi.2013.2275151
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Filipczuk, Pawel;Fevens, Thomas;Monczak, Roman
  • 通讯作者:
    Monczak, Roman
Automatic clinical image segmentation using pathological modeling, PCA and SVM
Semi-automatic computer aided lesion detection in dental X-rays using variational level set
  • DOI:
    10.1016/j.patcog.2007.01.012
  • 发表时间:
    2007-10-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Li, Shuo;Fevens, Thomas;Li, Song
  • 通讯作者:
    Li, Song
Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies
Optimized keyframe extraction for 3D character?animations
  • DOI:
    10.1002/cav.1471
  • 发表时间:
    2012-11-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Jin, Chao;Fevens, Thomas;Mudur, Sudhir
  • 通讯作者:
    Mudur, Sudhir

Fevens, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fevens, Thomas', 18)}}的其他基金

Towards Effective and Interpretable Deep Learning Applications for Microscopic Medical Imaging
面向显微医学成像的有效且可解释的深度学习应用
  • 批准号:
    RGPIN-2020-06785
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Effective and Interpretable Deep Learning Applications for Microscopic Medical Imaging
面向显微医学成像的有效且可解释的深度学习应用
  • 批准号:
    RGPIN-2020-06785
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Effective and Interpretable Deep Learning Applications for Microscopic Medical Imaging
面向显微医学成像的有效且可解释的深度学习应用
  • 批准号:
    RGPIN-2020-06785
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
  • 批准号:
    RGPIN-2014-04929
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed Deep Learning using Blockchain Mining Servers for Medical Imaging
使用区块链挖掘服务器进行医疗成像的分布式深度学习
  • 批准号:
    529457-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Engage Grants Program
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
  • 批准号:
    RGPIN-2014-04929
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
  • 批准号:
    RGPIN-2014-04929
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
  • 批准号:
    RGPIN-2014-04929
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Computational geometry and applications
计算几何及其应用
  • 批准号:
    249849-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Computational geometry and applications
计算几何及其应用
  • 批准号:
    249849-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Studentship
Plasmonic Mg-based catalysts for low temperature sunlight-assisted CO2 activation (MgCatCO2Act)
用于低温阳光辅助 CO2 活化的等离子体镁基催化剂 (MgCatCO2Act)
  • 批准号:
    EP/Y037294/1
  • 财政年份:
    2025
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
The Ethics of Voluntary Assisted Dying: Promoting Constructive Debate
自愿辅助死亡的伦理:促进建设性辩论
  • 批准号:
    DP240102614
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Projects
Mid-Infrared Vibrational-Assisted Detectors (MIRVID)
中红外振动辅助探测器 (MIRVID)
  • 批准号:
    EP/Y036379/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
PAPIER - Plasma Assisted Printing of Metal Inks with Enhanced Resistivity
PAPIER - 具有增强电阻率的金属油墨的等离子辅助印刷
  • 批准号:
    EP/Y001877/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Smart Wearable Devices with Force Control for Impedance Training in Robot Assisted Rehabilitation
具有力控制功能的智能可穿戴设备用于机器人辅助康复中的阻抗训练
  • 批准号:
    24K03321
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了