Towards Effective and Interpretable Deep Learning Applications for Microscopic Medical Imaging
面向显微医学成像的有效且可解释的深度学习应用
基本信息
- 批准号:RGPIN-2020-06785
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep learning has quickly evolved to solve difficult problems in many domains such as computer vision, particularly for problems where large amounts of data are available. For many medical applications, though, the data available tend to be small to medium size data sets. Further, these data sets typically are incomplete, contain entry errors, and unbalanced in terms of target classifications. For medical imaging data, beyond the basic complex nature of anatomical structures, there are challenges of noise from the collection process and the presence of imaging artifacts. The long-term objective of our research is to develop robust, accessible, rapid, transparent and accurate computer-aided medical diagnosis and grading tools to provide an automatic independent second opinion, to help avoid errors/oversights, to clinicians. The proposed research in our proposal aims to introduce or adapt new deep learning approaches to solve problems related to classification, segmentation, and interpretability for small- or medium-scale medical data. The classification problems considered are primarily related to the development of Computer Aided Diagnosis (CAD) systems, particularly for cytological images of fine needle biopsies for breast cancer, where we seek to improve accuracy and robustness to achieve clinically acceptable performance. We will continue our research on leveraging the progression of a disease over time to improve diagnosis. To create augmented data for deep learning training, we will study the creation of images and sequences of medical images by adapting our recent work on generative adversarial networks. For noisy medical data, we will seek to improve training in the presence of such data using local intrinsic dimensionality to locally evaluate the trained model. Our recent work on Continual Learning will be extended to improve the reliability of CAD systems to allow online learning of shifts in data distributions. Finally, we will our continue work on Meta-Learning by extending recent work on unsupervised Few-Shot Meta-Learning to radiomic applications. We will continue our work on improved nuclear segmentation algorithms for optical microscopic images. In addition to trying new deeper architectures, we will also explore the design of new loss functions for segmenting medical images, exploring the development of techniques beyond optimization approaches such as deep supervision, and the development of algorithmic learning rate schedulers. For deep learning models for malignancy diagnosis or grading, one major difficulty in these systems being approved for clinical use is the lack of interpretability of the decisions made by these models. To interpret the decisions made by deep learning models, we are studying correlations between handcrafted features and deep learning model features, the image retrieval strategies for finding similar images from past patients, and the generation of counterfactual visual explanations.
深度学习已经迅速发展,以解决计算机视觉等许多领域的难题,特别是对于有大量数据可用的问题。然而,对于许多医疗应用程序,可用的数据往往是小型到中型的数据集。此外,这些数据集通常不完整,包含输入错误,并且在目标分类方面不平衡。对于医学成像数据,除了解剖结构的基本复杂性质之外,还存在来自收集过程的噪声和成像伪影的存在的挑战。我们研究的长期目标是开发强大的,可访问的,快速的,透明的和准确的计算机辅助医疗诊断和分级工具,以提供自动独立的第二意见,以帮助避免错误/疏忽,临床医生。我们提案中的拟议研究旨在引入或调整新的深度学习方法,以解决与中小规模医疗数据的分类、分割和可解释性相关的问题。考虑的分类问题主要涉及计算机辅助诊断(CAD)系统的发展,特别是乳腺癌细针活检的细胞学图像,我们寻求提高准确性和鲁棒性,以实现临床可接受的性能。我们将继续研究如何利用疾病随时间的进展来改善诊断。为了创建用于深度学习训练的增强数据,我们将通过调整我们最近在生成对抗网络上的工作来研究图像和医学图像序列的创建。对于有噪声的医学数据,我们将寻求在存在此类数据的情况下使用局部固有维度来局部评估训练模型来改进训练。我们最近在持续学习方面的工作将扩展到提高CAD系统的可靠性,以允许在线学习数据分布的变化。最后,我们将继续元学习的工作,将最近的无监督少镜头元学习工作扩展到放射组学应用。我们将继续我们的工作,改进核分割算法的光学显微镜图像。除了尝试新的更深层次的架构外,我们还将探索分割医学图像的新损失函数的设计,探索深度监督等优化方法之外的技术开发,以及算法学习率优化器的开发。对于用于恶性肿瘤诊断或分级的深度学习模型,这些系统被批准用于临床的一个主要困难是这些模型所做的决策缺乏可解释性。为了解释深度学习模型做出的决定,我们正在研究手工特征和深度学习模型特征之间的相关性,从过去的患者中找到相似图像的图像检索策略,以及反事实视觉解释的生成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fevens, Thomas其他文献
Computer-Aided Breast Cancer Diagnosis Based on the Analysis of Cytological Images of Fine Needle Biopsies
- DOI:
10.1109/tmi.2013.2275151 - 发表时间:
2013-12-01 - 期刊:
- 影响因子:10.6
- 作者:
Filipczuk, Pawel;Fevens, Thomas;Monczak, Roman - 通讯作者:
Monczak, Roman
Automatic clinical image segmentation using pathological modeling, PCA and SVM
- DOI:
10.1016/j.engappai.2006.01.011 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:8
- 作者:
Li, Shuo;Fevens, Thomas;Li, Song - 通讯作者:
Li, Song
Semi-automatic computer aided lesion detection in dental X-rays using variational level set
- DOI:
10.1016/j.patcog.2007.01.012 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:8
- 作者:
Li, Shuo;Fevens, Thomas;Li, Song - 通讯作者:
Li, Song
Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies
- DOI:
10.2478/v10006-008-0007-x - 发表时间:
2008-01-01 - 期刊:
- 影响因子:1.9
- 作者:
Jelen, Lukasz;Fevens, Thomas;Krzyzak, Adam - 通讯作者:
Krzyzak, Adam
Optimized keyframe extraction for 3D character?animations
- DOI:
10.1002/cav.1471 - 发表时间:
2012-11-01 - 期刊:
- 影响因子:1.1
- 作者:
Jin, Chao;Fevens, Thomas;Mudur, Sudhir - 通讯作者:
Mudur, Sudhir
Fevens, Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fevens, Thomas', 18)}}的其他基金
Towards Effective and Interpretable Deep Learning Applications for Microscopic Medical Imaging
面向显微医学成像的有效且可解释的深度学习应用
- 批准号:
RGPIN-2020-06785 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Towards Effective and Interpretable Deep Learning Applications for Microscopic Medical Imaging
面向显微医学成像的有效且可解释的深度学习应用
- 批准号:
RGPIN-2020-06785 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
- 批准号:
RGPIN-2014-04929 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Distributed Deep Learning using Blockchain Mining Servers for Medical Imaging
使用区块链挖掘服务器进行医疗成像的分布式深度学习
- 批准号:
529457-2018 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
- 批准号:
RGPIN-2014-04929 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
- 批准号:
RGPIN-2014-04929 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
- 批准号:
RGPIN-2014-04929 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
- 批准号:
RGPIN-2014-04929 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Computational geometry and applications
计算几何及其应用
- 批准号:
249849-2011 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Computational geometry and applications
计算几何及其应用
- 批准号:
249849-2006 - 财政年份:2010
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Legitimacy and effective policing responses to domestic and family violence
对家庭暴力的合法性和有效的警务反应
- 批准号:
DP240102371 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Projects
Combining eye-tracking and comparative judgments to identify proficiency differences for more effective language learning
结合眼动追踪和比较判断来识别熟练程度差异,以实现更有效的语言学习
- 批准号:
24K16140 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Phase 2 - Effective and Integrated Chemical Free Robotic Milking
第 2 阶段 - 有效且集成的无化学品机器人挤奶
- 批准号:
10093094 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative R&D
The effective and sustainable allocation of the land-based carbon dioxide removal options under changing climate
气候变化下陆基二氧化碳清除方案的有效和可持续分配
- 批准号:
24K20979 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Nanobubbles for effective and energy efficient water treatment
用于有效且节能的水处理的纳米气泡
- 批准号:
IE230100437 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Early Career Industry Fellowships
An investigation of the role of teacher intervention in effective digital game-based vocabulary learning
教师干预在有效的基于数字游戏的词汇学习中的作用的调查
- 批准号:
24K04078 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Launchpad
ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
- 批准号:
EP/Y032942/1 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Optimisation of small molecule inhibitors for effective targeting of phospholipase C gamma in T-cell lymphoma
优化小分子抑制剂以有效靶向 T 细胞淋巴瘤中的磷脂酶 C γ
- 批准号:
MR/Y503344/1 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Workshop on Effective Practices to Support Open Educational Documents, Technologies, and Research
支持开放教育文档、技术和研究的有效实践研讨会
- 批准号:
2333297 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant