The Higher Rank Selberg Sieve and Applications
高阶塞尔伯格筛及其应用
基本信息
- 批准号:RGPIN-2015-03957
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In 1947, Atle Selberg discovered a new method in sieve theory which revolutionized the subject. This method is now called the Selberg sieve and has been used in a spectrum of applications ranging from the classical twin prime problem to more sophisticated questions of counting points on algebraic varieties. Recently, a special case of a "higher rank'' version of the Selberg sieve was applied by Maynard and Tao (independently) to improve and simplify upon Zhang's ground breaking work regarding infinitely many bounded gaps between consecutive prime numbers. In joint work with my doctoral student,
1947年,Atle Selberg在筛法中发现了一种新的方法,彻底改变了筛法。这种方法现在被称为Selberg筛法,并已被用于从经典的孪生素数问题到代数簇上计数点的更复杂问题的一系列应用中。最近,梅纳德和陶应用了塞尔伯格筛的“高阶”版本的一个特例(独立)为了改进和简化张的开创性工作,关于连续素数之间的无限多个有界间隔。在与我的博士生的联合工作中,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murty, Ram其他文献
Murty, Ram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murty, Ram', 18)}}的其他基金
Zeta Functions and Probability Theory
Zeta 函数和概率论
- 批准号:
RGPIN-2020-03927 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Zeta Functions and Probability Theory
Zeta 函数和概率论
- 批准号:
RGPIN-2020-03927 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Zeta Functions and Probability Theory
Zeta 函数和概率论
- 批准号:
RGPIN-2020-03927 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
The Higher Rank Selberg Sieve and Applications
高阶塞尔伯格筛及其应用
- 批准号:
RGPIN-2015-03957 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
The Higher Rank Selberg Sieve and Applications
高阶塞尔伯格筛及其应用
- 批准号:
RGPIN-2015-03957 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
The Higher Rank Selberg Sieve and Applications
高阶塞尔伯格筛及其应用
- 批准号:
RGPIN-2015-03957 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
The Higher Rank Selberg Sieve and Applications
高阶塞尔伯格筛及其应用
- 批准号:
RGPIN-2015-03957 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Properties and applications of Artin L-series
Artin L系列的特性和应用
- 批准号:
9418-2010 - 财政年份:2014
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Properties and applications of Artin L-series
Artin L系列的特性和应用
- 批准号:
9418-2010 - 财政年份:2013
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Properties and applications of Artin L-series
Artin L系列的特性和应用
- 批准号:
9418-2010 - 财政年份:2012
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
单核巨噬细胞通过RANK/RANKL/OPG 信号通路调控小鼠P3趾尖骨关节再生的机制研究
- 批准号:JCZRYB202500176
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
OPG-RANKL-RANK轴调控NLRP3炎症小体介导DA神经元变性的分子机制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
CD8+T细胞通过RANKL-RANK轴和小胶质细胞相互作用重塑脊髓损伤免疫微环境影响干细胞疗效的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
RANK蛋白的S-棕榈酰化修饰调控破骨细胞活化在骨质疏松骨折中的
作用和机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于OPG/RANK/RANKL信号通路研究异补骨脂素调控炎症抗骨质疏松的作用机制
- 批准号:2024Y9519
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
肠道菌群代谢产物3,5-DiCQA调控RANK蛋白表达参与糖尿病肾病足细胞损伤的机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
补体C1q通过OPG-RANKL-RANK系统介导NF-κB信号通路调控髌股关节发育不良的机制研究
- 批准号:82302656
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RANK参与调控糖尿病肾病足细胞自噬的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
黄芩素通过RANKL/RANK/MITF信号通路促进骨质疏松性骨折愈合的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于OPG/RANKL/RANK通路研究Triptolide“骨形成-骨吸收”量效双向调节机制
- 批准号:2022J011482
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Rank Metric Codes from Drinfeld Modules and New Primitives in Code Based Cryptography
职业:对来自 Drinfeld 模块的度量代码和基于代码的密码学中的新原语进行排名
- 批准号:
2338424 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant
歯周組織再生におけるRANK発現EVsの機能解析とその治療応用への基盤構築
表达 RANK 的 EV 在牙周组织再生中的功能分析并为其治疗应用奠定基础
- 批准号:
24K12906 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Moving to higher rank: from hyperbolic to Anosov
会议:迈向更高级别:从双曲线到阿诺索夫
- 批准号:
2350423 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
- 批准号:
BB/Y513957/1 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Research Grant
RANK-RANKL結合可視化による骨粗鬆症薬の開発および骨代謝機構の解明
通过可视化 RANK-RANKL 结合来开发骨质疏松症药物并阐明骨代谢机制
- 批准号:
24K12866 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
乳がん細胞由来細胞外小胞のRANK-RANKL経路を介した破骨細胞分化機構の解明
阐明乳腺癌细胞来源的细胞外囊泡的RANK-RANKL途径介导的破骨细胞分化机制
- 批准号:
23KJ1947 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
- 批准号:
2896389 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Studentship
Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
- 批准号:
2321093 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Condensation and Prediction Acceleration for Deep Learning Through Low-rank Regularization and Adaptive Proximal Methods
通过低秩正则化和自适应近端方法进行深度学习的压缩和预测加速
- 批准号:
23K19981 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
- 批准号:
2785744 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Studentship