Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains

正则域上的体积公式、正交展开和定量逼近

基本信息

  • 批准号:
    RGPIN-2015-04702
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

It is often desirable to approximate a general, possibly complicated function by simpler, easier to compute functions, such as algebraic polynomials, multivariate splines and wavelets. Quantitative approximation  (QA) attempts to determine as precisely as possible the size of the error in this approximation. Cubature formulas (CFs) and orthogonal polynomial expansions(OPEs)  have been playing crucial roles in QA and many other related areas, such as numerical integration, computer tomography, coding theory, data fitting, and compressive sensing. CF itself is essential for practical evaluation of  high dimensional integrals, and  OPEs have been a main  tool for studying and constructing  CFs.  Modern problems in CFs,  OPEs and QA are often formulated in several variables on  various regular domains, such as  spheres, simplexes,  balls and cubes, driven by applications in engineering, finance, biology, medicine and quantum chemistry.
通常希望用更简单、更容易计算的函数来近似一般的、可能复杂的函数,例如代数多项式、多元样条和小波。定量近似(QA)试图尽可能精确地确定近似中的误差大小。体积公式(CF)和正交多项式展开(OPEs)在质量保证和许多其他相关领域(如数值积分、计算机断层扫描、编码理论、数据拟合和压缩感知)中起着至关重要的作用。CF本身对于高维积分的实际计算是必不可少的,而OPEs已经成为研究和构造CF的主要工具。 CF,OPEs和QA中的现代问题通常在各种规则域上的多个变量中进行表述,例如球体,单纯形,球和立方体,由工程,金融,生物学,医学和量子化学中的应用驱动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dai, Feng其他文献

Perineural Methylprednisolone Depot Formulation Decreases Opioid Consumption After Total Knee Arthroplasty.
全膝关节置换术后,周围甲基丙诺酮仓库配方可降低阿片类药物的消耗。
  • DOI:
    10.2147/jpr.s378243
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Del Toro-Pagan, Nicole M.;Dai, Feng;Banack, Trevor;Berlin, Jill;Makadia, Satya A.;Rubin, Lee E.;Zhou, Bin;Huynh, Phu;Li, Jinlei
  • 通讯作者:
    Li, Jinlei
Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments
脆性岩石压剪联合加载试验动力响应及破坏机制
Association of low-level lead exposure with all-cause and cardiovascular disease mortality in US adults with hypertension: evidence from the National Health and Nutrition Examination Survey 2003-2010.
  • DOI:
    10.1186/s13690-023-01148-6
  • 发表时间:
    2023-08-14
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Wang, Lili;Wang, Chaofan;Liu, Tao;Xuan, Haochen;Li, Xiaoqun;Shi, Xiangxiang;Dai, Feng;Chen, Junhong;Li, Dongye;Xu, Tongda
  • 通讯作者:
    Xu, Tongda
Numerical investigation on the dynamic progressive fracture mechanism of cracked chevron notched semi-circular bend specimens in split Hopkinson pressure bar tests
霍普金森压杆试验中人字形缺口半圆形弯曲试件动态渐进断裂机制的数值研究
  • DOI:
    10.1016/j.engfracmech.2017.09.001
  • 发表时间:
    2017-10-15
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Du, Hongbo;Dai, Feng;Xu, Yuan
  • 通讯作者:
    Xu, Yuan
Some Fundamental Issues in Dynamic Compression and Tension Tests of Rocks Using Split Hopkinson Pressure Bar
  • DOI:
    10.1007/s00603-010-0091-8
  • 发表时间:
    2010-11-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Dai, Feng;Huang, Sheng;Tan, Zhuoying
  • 通讯作者:
    Tan, Zhuoying

Dai, Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dai, Feng', 18)}}的其他基金

Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
  • 批准号:
    RGPIN-2020-03909
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
  • 批准号:
    RGPIN-2020-03909
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
  • 批准号:
    RGPIN-2020-03909
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
  • 批准号:
    RGPIN-2015-04702
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
  • 批准号:
    RGPIN-2015-04702
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
  • 批准号:
    RGPIN-2015-04702
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
  • 批准号:
    RGPIN-2015-04702
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
  • 批准号:
    311678-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
  • 批准号:
    311678-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
  • 批准号:
    311678-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
  • 批准号:
    RGPIN-2015-04702
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Dimension formulas for automorphic forms on orthogonal groups
正交群上自守形式的维数公式
  • 批准号:
    405659853
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grants
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
  • 批准号:
    RGPIN-2015-04702
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
  • 批准号:
    RGPIN-2015-04702
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
  • 批准号:
    RGPIN-2015-04702
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
  • 批准号:
    311678-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
  • 批准号:
    311678-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
  • 批准号:
    311678-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
  • 批准号:
    311678-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
  • 批准号:
    311678-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了