Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
基本信息
- 批准号:RGPIN-2015-04702
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is often desirable to approximate a general, possibly complicated function by simpler, easier to compute functions, such as algebraic polynomials, multivariate splines and wavelets. Quantitative approximation (QA) attempts to determine as precisely as possible the size of the error in this approximation. Cubature formulas (CFs) and orthogonal polynomial expansions(OPEs) have been playing crucial roles in QA and many other related areas, such as numerical integration, computer tomography, coding theory, data fitting, and compressive sensing. CF itself is essential for practical evaluation of high dimensional integrals, and OPEs have been a main tool for studying and constructing CFs. Modern problems in CFs, OPEs and QA are often formulated in several variables on various regular domains, such as spheres, simplexes, balls and cubes, driven by applications in engineering, finance, biology, medicine and quantum chemistry.
Many very important contributions have been made recently in various directions of CFs, OPEs and QA on regular domains. Such contributions include the solution of the longstanding Korevaar-Meyer conjecture on the optimal size of spherical designs, new world record in counterexamples to Borsuk's conjecture, universally optimal distribution of points on spheres, characterizations of the rate of polynomial approximation in terms of smoothness on balls, spheres, and polytopes, developments of sparse representations of high-dimensional functions, developments of kernel-based approximation methods that approximate high-dimensional datasets, to name just a few. Almost all these important contributions utilize, in one way or another, on various methods and techniques arising from OPEs on regular domains.
This proposed program consists of the following two integrated parts: (i) Study qualitative and quantitative features of OPEs and CFs on regular domains; (ii) Explore ways to apply results of Part (i) to challenges in QA and other related areas, such as numerical analysis, discrete geometry and convex geometry. In all phases of the research, the Dunkl theory of weighted OPEs on spheres is expected to be the useful tool. The research will develop new construction methods for positive CFs on spheres and related domains and will enhance our understanding of how geometry of the underlying domain influences the quality of high dimensional approximation. It will also stimulate interest in students and provide them with a greater opportunity to learn the fundamentals and powerful techniques of different disciplines, and their interrelations. Results of the proposed research will have potential applications in a number of areas, such as numerical analysis, statistics, geometric modeling, geophysics, differential equations and computing, and imaging and information technologies.
通常希望用更简单、更容易计算的函数来近似一般的、可能复杂的函数,例如代数多项式、多元样条和小波。定量近似(QA)试图尽可能精确地确定近似中的误差大小。体积公式(CF)和正交多项式展开(OPEs)在质量保证和许多其他相关领域(如数值积分、计算机断层扫描、编码理论、数据拟合和压缩感知)中起着至关重要的作用。CF本身对于高维积分的实际计算是必不可少的,而OPEs已经成为研究和构造CF的主要工具。 CF,OPEs和QA中的现代问题通常在各种规则域上的多个变量中进行表述,例如球体,单纯形,球和立方体,由工程,金融,生物学,医学和量子化学中的应用驱动。
近年来,正则域上的CF、OPEs和QA在各个方向上都做出了非常重要的贡献。 这些贡献包括解决了长期存在的关于球形设计最佳尺寸的Korevaar-Meyer猜想、Borsuk猜想反例的新世界纪录、球面上点的普遍最佳分布、根据光滑度的多项式逼近率的特征球、球体和多面体、高维函数稀疏表示的发展、基于核的近似方法的发展,近似高维数据集,仅举几例。几乎所有这些重要的贡献都以这样或那样的方式利用了从常规域的OPEs中产生的各种方法和技术。
该拟议计划由以下两个集成部分组成:(i)研究规则域上OPEs和CF的定性和定量特征;(ii)探索将第(i)部分的结果应用于QA和其他相关领域挑战的方法,例如数值分析、离散几何和凸几何。在研究的各个阶段,球上加权运算熵的Dunkl理论有望成为有用的工具。该研究将开发新的建设方法,积极的CF领域和相关领域,并将提高我们的理解如何几何基础域的影响高维近似的质量。这项研究亦会激发学生的兴趣,让他们有更多机会学习不同学科的基本知识和强大的技术,以及它们之间的相互关系。建议的研究结果将在多个领域有潜在的应用,例如数值分析、统计学、几何模型、物理学、微分方程和计算,以及成像和信息技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dai, Feng其他文献
Perineural Methylprednisolone Depot Formulation Decreases Opioid Consumption After Total Knee Arthroplasty.
全膝关节置换术后,周围甲基丙诺酮仓库配方可降低阿片类药物的消耗。
- DOI:
10.2147/jpr.s378243 - 发表时间:
2022 - 期刊:
- 影响因子:2.7
- 作者:
Del Toro-Pagan, Nicole M.;Dai, Feng;Banack, Trevor;Berlin, Jill;Makadia, Satya A.;Rubin, Lee E.;Zhou, Bin;Huynh, Phu;Li, Jinlei - 通讯作者:
Li, Jinlei
Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments
脆性岩石压剪联合加载试验动力响应及破坏机制
- DOI:
10.1007/s00603-017-1364-2 - 发表时间:
2018-03-01 - 期刊:
- 影响因子:6.2
- 作者:
Xu, Yuan;Dai, Feng - 通讯作者:
Dai, Feng
Association of low-level lead exposure with all-cause and cardiovascular disease mortality in US adults with hypertension: evidence from the National Health and Nutrition Examination Survey 2003-2010.
- DOI:
10.1186/s13690-023-01148-6 - 发表时间:
2023-08-14 - 期刊:
- 影响因子:3.3
- 作者:
Wang, Lili;Wang, Chaofan;Liu, Tao;Xuan, Haochen;Li, Xiaoqun;Shi, Xiangxiang;Dai, Feng;Chen, Junhong;Li, Dongye;Xu, Tongda - 通讯作者:
Xu, Tongda
Numerical investigation on the dynamic progressive fracture mechanism of cracked chevron notched semi-circular bend specimens in split Hopkinson pressure bar tests
霍普金森压杆试验中人字形缺口半圆形弯曲试件动态渐进断裂机制的数值研究
- DOI:
10.1016/j.engfracmech.2017.09.001 - 发表时间:
2017-10-15 - 期刊:
- 影响因子:5.4
- 作者:
Du, Hongbo;Dai, Feng;Xu, Yuan - 通讯作者:
Xu, Yuan
Some Fundamental Issues in Dynamic Compression and Tension Tests of Rocks Using Split Hopkinson Pressure Bar
- DOI:
10.1007/s00603-010-0091-8 - 发表时间:
2010-11-01 - 期刊:
- 影响因子:6.2
- 作者:
Dai, Feng;Huang, Sheng;Tan, Zhuoying - 通讯作者:
Tan, Zhuoying
Dai, Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dai, Feng', 18)}}的其他基金
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
- 批准号:
RGPIN-2020-03909 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
- 批准号:
RGPIN-2020-03909 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
- 批准号:
RGPIN-2020-03909 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
- 批准号:
RGPIN-2015-04702 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
- 批准号:
RGPIN-2015-04702 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
- 批准号:
RGPIN-2015-04702 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
- 批准号:
RGPIN-2015-04702 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
- 批准号:
311678-2010 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
- 批准号:
311678-2010 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
- 批准号:
311678-2010 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
- 批准号:
RGPIN-2015-04702 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Dimension formulas for automorphic forms on orthogonal groups
正交群上自守形式的维数公式
- 批准号:
405659853 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Research Grants
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
- 批准号:
RGPIN-2015-04702 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
- 批准号:
RGPIN-2015-04702 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
- 批准号:
RGPIN-2015-04702 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
- 批准号:
311678-2010 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
- 批准号:
311678-2010 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
- 批准号:
311678-2010 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
- 批准号:
311678-2010 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
- 批准号:
311678-2010 - 财政年份:2010
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual