Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
基本信息
- 批准号:311678-2010
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2013
- 资助国家:加拿大
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This program proposes to work on problems involving multivariate orthogonal polynomial expansions (OPEs), multivariate cubature formulas (CFs) and their applications to multivariate approximation. It contains three integrated parts. The first part concerns investigations into qualitative and quantitative features of OPEs with respect to weight functions invariant under certain groups on various regular domains, such as the cube, the ball, the simplex, and the sphere. The goals are to reveal how geometry of the underlying domain influences the properties of OPEs, to investigate asymptotic properties of multivariate orthogonal polynomials, and to establish variaous multiplier theorems for OPEs. The second part of the research concerns multivariate CFs, which will be studied with the help of multivariate orthogonal polynomials. This project calls for new construction methods of multivariate CFs, such as through the study of polynomial interpolation in several variables. The last part of the research is multivariate approximation, which will be studied together with applications of OPEs and CFs. The results will have direct applications to interpolation, numerical analysis, special functions and partial differential equations. The main tools for the proposed research are from harmonic analysis, functional analysis and the Dunkl theory of h-harmonics.
本课程主要研究多元正交多项式展开式(OPEs)、多元求积公式(CFs) 和 它们在多元近似中的应用。 它包含三个完整的部分。第一部分涉及调查的定性和定量特征的OPEs的权重函数不变的某些群体下的各种规则域,如立方体,球,单纯形,和领域。 目标是揭示底层域的几何形状如何影响OPEs的属性, 探讨 多元正交多项式的渐近性质,并建立了多元正交多项式的各种乘子定理。 第二部分的研究涉及多元CF,这将是研究的帮助下,多元正交多项式。该项目呼吁新的多元CF的建设方法,如通过研究多个变量的多项式插值。最后一部分是多元逼近,这将与OPEs和CFs的应用一起研究。所得结果将直接应用于插值、数值分析、特殊函数和偏微分方程。本文的主要研究工具是谐波分析、泛函分析和Dunkl谐波理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dai, Feng其他文献
Perineural Methylprednisolone Depot Formulation Decreases Opioid Consumption After Total Knee Arthroplasty.
全膝关节置换术后,周围甲基丙诺酮仓库配方可降低阿片类药物的消耗。
- DOI:
10.2147/jpr.s378243 - 发表时间:
2022 - 期刊:
- 影响因子:2.7
- 作者:
Del Toro-Pagan, Nicole M.;Dai, Feng;Banack, Trevor;Berlin, Jill;Makadia, Satya A.;Rubin, Lee E.;Zhou, Bin;Huynh, Phu;Li, Jinlei - 通讯作者:
Li, Jinlei
Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments
脆性岩石压剪联合加载试验动力响应及破坏机制
- DOI:
10.1007/s00603-017-1364-2 - 发表时间:
2018-03-01 - 期刊:
- 影响因子:6.2
- 作者:
Xu, Yuan;Dai, Feng - 通讯作者:
Dai, Feng
Numerical investigation on the dynamic progressive fracture mechanism of cracked chevron notched semi-circular bend specimens in split Hopkinson pressure bar tests
霍普金森压杆试验中人字形缺口半圆形弯曲试件动态渐进断裂机制的数值研究
- DOI:
10.1016/j.engfracmech.2017.09.001 - 发表时间:
2017-10-15 - 期刊:
- 影响因子:5.4
- 作者:
Du, Hongbo;Dai, Feng;Xu, Yuan - 通讯作者:
Xu, Yuan
Some Fundamental Issues in Dynamic Compression and Tension Tests of Rocks Using Split Hopkinson Pressure Bar
- DOI:
10.1007/s00603-010-0091-8 - 发表时间:
2010-11-01 - 期刊:
- 影响因子:6.2
- 作者:
Dai, Feng;Huang, Sheng;Tan, Zhuoying - 通讯作者:
Tan, Zhuoying
Association of low-level lead exposure with all-cause and cardiovascular disease mortality in US adults with hypertension: evidence from the National Health and Nutrition Examination Survey 2003-2010.
- DOI:
10.1186/s13690-023-01148-6 - 发表时间:
2023-08-14 - 期刊:
- 影响因子:3.3
- 作者:
Wang, Lili;Wang, Chaofan;Liu, Tao;Xuan, Haochen;Li, Xiaoqun;Shi, Xiangxiang;Dai, Feng;Chen, Junhong;Li, Dongye;Xu, Tongda - 通讯作者:
Xu, Tongda
Dai, Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dai, Feng', 18)}}的其他基金
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
- 批准号:
RGPIN-2020-03909 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
- 批准号:
RGPIN-2020-03909 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Sampling discretization, cubature formulas and quantitative approximation in multidimensional settings
多维环境中的采样离散化、体积公式和定量近似
- 批准号:
RGPIN-2020-03909 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
- 批准号:
RGPIN-2015-04702 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
- 批准号:
RGPIN-2015-04702 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
- 批准号:
RGPIN-2015-04702 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
- 批准号:
RGPIN-2015-04702 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Cubature Formulas, Orthogonal Expansions and Quantitative Approximation on Regular Domains
正则域上的体积公式、正交展开和定量逼近
- 批准号:
RGPIN-2015-04702 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
- 批准号:
311678-2010 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Orthogonal expansions, cubature formulas and approximation in several variables
正交展开、体积公式和多变量近似
- 批准号:
311678-2010 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
- 批准号:
2349756 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Using advanced genomic and computational approaches to discover and characterize novel genetic variants in neurodevelopmental disorders.
使用先进的基因组和计算方法来发现和表征神经发育障碍中的新遗传变异。
- 批准号:
491213 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Fellowship Programs
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Spillover Effects of Medicaid Dental Coverage Expansions on Health Status
医疗补助牙科覆盖范围扩大对健康状况的溢出效应
- 批准号:
10590847 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Pre-clinical studies of a small-molecule to reverse neurodegenerative disease-causing mutations for its commercialization and application
逆转神经退行性疾病引起的突变的小分子的临床前研究及其商业化和应用
- 批准号:
490424 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Operating Grants
Empirical study of the political effect on institutional expansions in secondary education: A case of the Philippines
政治对中等教育制度扩张影响的实证研究:以菲律宾为例
- 批准号:
22K13394 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Effects of Scholarship on Student's Learning Behavior Focusing on PreferenceDevelopments and Expansions of Behavioral Economics Approach
奖学金对学生学习行为的影响关注偏好行为经济学方法的发展和扩展
- 批准号:
22K13722 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel approaches to identify tandem repeat expansions in neurodegenerative disease
识别神经退行性疾病串联重复扩增的新方法
- 批准号:
10440935 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
In Silico Drug Design Targeting RNA Repeat Expansions
针对 RNA 重复扩增的计算机药物设计
- 批准号:
10439166 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
In Silico Drug Design Targeting RNA Repeat Expansions
针对 RNA 重复扩增的计算机药物设计
- 批准号:
10796593 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别: