Uncertainty, Action & Interaction: in Pursuit of Cognitive Information Processing
不确定性,行动
基本信息
- 批准号:121634-2013
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research vision aims to contribute to the design and implementation of profound cognitive information processing (CIP) systems for augmented human cognition in real-life environments. CIP involves the ability to perceive, learn, reason and interact robustly in face of uncertainty and noise. I plan to build on my previous work to elaborate efficient algorithms to tackle different cognitive levels from low to high-level sustaining CIP systems: (i) reasoning on uncertain knowledge in static worlds; (ii) reasoning over time in an uncertain environment; (iii) deciding what to do in uncertain environment; (iv) deciding what to do in an uncertain and multiagent environment. In the context of (i), we propose to construct our own priors so that one can cover directed acyclic graph structures as belief networks and latent trees. We particularly investigate which representation of the posterior distribution over hidden units' popularity is the best. In the context of (ii), our work will mainly focus on the interaction between modelling and filtering in a Bayesian perspective. One direction aims at applying flexible Bayesian nonparametric modelling methods to learn unknown probabilistic models for hidden state estimation. The other direction is to design a recursive Bayesian filtering framework to efficiently update Bayesian nonparametric modelling performance in an online manner. For level (iii), we will first investigate the case of transfer learning in the context of Bayesian partially observable Markov decision process (POMDP), particularly (a) when multi-task and life-learning are used for learning a POMDP and (b) when the training data from single task are not sufficient. Second, we investigate a more speculative avenue which consists in structuring Bayesian POMDP in the form of dynamic decision network (DDN), that is, a DBN completed by rewards, and then translate it to an inference problem. Finally and for (iv), we will focus on how several aspects of cooperative control, particularly consensus between agents, can be formulated in ``potential games'' and how these specific games can be pertained to distributed resource allocation as well as to local and distributed control laws.
我的研究愿景旨在为在现实生活环境中增强人类认知的深刻认知信息处理(CIP)系统的设计和实现做出贡献。CIP包括在面对不确定性和噪声时稳健地感知、学习、推理和互动的能力。我计划在我以前工作的基础上,详细阐述有效的算法,以解决从低水平到高级持续CIP系统的不同认知水平:(I)在静态世界中对不确定知识进行推理;(Ii)在不确定环境中随着时间的推移进行推理;(Iii)在不确定环境中决定做什么;(Iv)决定在不确定和多代理环境中做什么。在(I)的背景下,我们建议构造我们自己的先验,这样就可以将有向无环图结构覆盖为信任网络和潜在树。我们特别研究了隐藏单元受欢迎度的后验分布的哪种表示是最好的。在(Ii)的背景下,我们的工作将主要集中在贝叶斯观点中建模和过滤之间的相互作用。一个方向是应用灵活的贝叶斯非参数建模方法来学习未知的概率模型以进行隐藏状态估计。另一个方向是设计递归贝叶斯过滤框架,以在线方式高效地更新贝叶斯非参数建模性能。对于水平(III),我们将首先在贝叶斯部分可观测马尔可夫决策过程(POMDP)的背景下研究转移学习的情况,特别是(A)当多任务和生活学习用于学习POMDP时,以及(B)当来自单个任务的训练数据不充分时。其次,我们研究了一种更具投机性的途径,即以动态决策网络(DDN)的形式构造贝叶斯POMDP,即由奖励完成的DBN,然后将其转化为推理问题。最后,对于(Iv),我们将重点讨论如何在“潜在博弈”中制定合作控制的几个方面,特别是代理人之间的共识,以及这些具体博弈如何与分布式资源分配以及本地和分布式控制法有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chaibdraa, Brahim其他文献
Chaibdraa, Brahim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chaibdraa, Brahim', 18)}}的其他基金
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
- 批准号:
RGPIN-2018-06134 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
- 批准号:
RGPIN-2018-06134 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
- 批准号:
RGPIN-2018-06134 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
- 批准号:
RGPIN-2018-06134 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Uncertainty, Action & Interaction: in Pursuit of Cognitive Information Processing
不确定性,行动
- 批准号:
121634-2013 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Uncertainty, Action & Interaction: in Pursuit of Cognitive Information Processing
不确定性,行动
- 批准号:
121634-2013 - 财政年份:2015
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Uncertainty, Action & Interaction: in Pursuit of Cognitive Information Processing
不确定性,行动
- 批准号:
121634-2013 - 财政年份:2014
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Uncertainty, Action & Interaction: in Pursuit of Cognitive Information Processing
不确定性,行动
- 批准号:
121634-2013 - 财政年份:2013
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Agent and multiagent computing for complex environments
适用于复杂环境的代理和多代理计算
- 批准号:
121634-2008 - 财政年份:2012
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Agent and multiagent computing for complex environments
适用于复杂环境的代理和多代理计算
- 批准号:
121634-2008 - 财政年份:2011
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
The interaction between anamorelin and immune checkpoint inhibitors and its mechanism of action
阿拉莫林与免疫检查点抑制剂的相互作用及其作用机制
- 批准号:
23K07600 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interaction of bile acids and hormone action in the brain
胆汁酸与大脑中激素作用的相互作用
- 批准号:
477275 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Operating Grants
Biological action of PTH/PTHrP on bone-specific blood vessels and osteo-vascular interaction
PTH/PTHrP 对骨特异性血管和骨血管相互作用的生物学作用
- 批准号:
21H03103 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Action and interaction of ionotropic and metabotropic neurotransmission
离子型和代谢型神经传递的作用和相互作用
- 批准号:
10166240 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Action of starfish gonadotropic hormone: interaction with the receptor and mechanism of gamete shedding
海星促性腺激素的作用:与受体的相互作用和配子脱落的机制
- 批准号:
19K06747 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamic Chemical Probes with New Modes of Action to Deconvolute Therapeutic Protein-Protein Interaction Networks
具有新作用模式的动态化学探针可解卷积治疗性蛋白质-蛋白质相互作用网络
- 批准号:
2284163 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Studentship
Elucidation of a new mechanisms of action on drug-drug interaction of
阐明药物-药物相互作用的新作用机制
- 批准号:
19K16435 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CHS: Small: Establishing Action Laws for Touch Interaction
CHS:小:建立触摸交互的动作法则
- 批准号:
1815514 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Action and interaction in infants with hearing loss, before and after cochlear implantation
听力损失婴儿在人工耳蜗植入前后的行为和互动
- 批准号:
9882975 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
The INTErvention Research and Action for CiTies and InnOvatioN (INTERACTION) Program
城市与创新干预研究与行动(INTERACTION)计划
- 批准号:
397383 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Operating Grants