Probabilistic Graphical Models for Data Mining and Recommendation in Social Media
社交媒体中数据挖掘和推荐的概率图形模型
基本信息
- 批准号:250960-2012
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Social media allow the creation and exchange of user-generated content and support various forms of interactions among content producers and consumers, based on the technological foundations of Web 2.0. Compared to traditional media such as newspapers and TV, social media have a much larger and more diverse group of producers, leading to many short and noisy posts, allow users to comment on content and to communicate with each other, and evolve dynamically. Social media have the potential to provide valuable feedback to producers and to allow consumers to tap into the "wisdom of the crowds" as aid in their decision making. The long-term objectives of our research program are to develop (1) Data mining methods to model the complex dynamics of collective action in social media, enabling a better understanding of these media and the prediction of future events. (2) Recommendation methods that recommend trust-worthy and relevant content, specific to a given user, and enable social media sites to increase the level of user participation. To model the complex effects in social media, we will explore probabilistic graphical models, which are very informative and can naturally integrate available background knowledge.
社交媒体允许创建和交换用户生成的内容,并支持基于Web 2.0技术基础的内容生产者和消费者之间的各种形式的互动。与报纸和电视等传统媒体相比,社交媒体拥有更大和更多样化的生产者群体,导致许多简短和嘈杂的帖子,允许用户评论内容并相互交流,并动态发展。社会媒体有可能为生产者提供有价值的反馈,并使消费者能够利用“群众的智慧”来帮助他们做出决策。我们的研究计划的长期目标是开发(1)数据挖掘方法来模拟社交媒体中集体行动的复杂动态,从而更好地了解这些媒体并预测未来事件。(2)推荐方法,推荐值得信赖和相关的内容,特定于给定的用户,并使社交媒体网站能够提高用户的参与程度。为了对社交媒体中的复杂影响进行建模,我们将探索概率图形模型,这些模型信息量很大,可以自然地整合现有的背景知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ester, Martin其他文献
MOLI: multi-omics late integration with deep neural networks for drug response prediction
- DOI:
10.1093/bioinformatics/btz318 - 发表时间:
2019-07-15 - 期刊:
- 影响因子:5.8
- 作者:
Sharifi-Noghabi, Hossein;Zolotareva, Olga;Ester, Martin - 通讯作者:
Ester, Martin
AITL: Adversarial Inductive Transfer Learning with input and output space adaptation for pharmacogenomics
- DOI:
10.1093/bioinformatics/btaa442 - 发表时间:
2020-07-01 - 期刊:
- 影响因子:5.8
- 作者:
Sharifi-Noghabi, Hossein;Peng, Shuman;Ester, Martin - 通讯作者:
Ester, Martin
Collaborative intra-tumor heterogeneity detection
- DOI:
10.1093/bioinformatics/btz355 - 发表时间:
2019-07-15 - 期刊:
- 影响因子:5.8
- 作者:
Khakabimamaghani, Sahand;Malikic, Salem;Ester, Martin - 通讯作者:
Ester, Martin
Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks.
- DOI:
10.3390/molecules27165114 - 发表时间:
2022-08-11 - 期刊:
- 影响因子:4.6
- 作者:
Pandey, Mohit;Radaeva, Mariia;Mslati, Hazem;Garland, Olivia;Fernandez, Michael;Ester, Martin;Cherkasov, Artem - 通讯作者:
Cherkasov, Artem
HUME: large-scale detection of causal genetic factors of adverse drug reactions
- DOI:
10.1093/bioinformatics/bty475 - 发表时间:
2018-12-15 - 期刊:
- 影响因子:5.8
- 作者:
Mansouri, Mehrdad;Yuan, Bowei;Ester, Martin - 通讯作者:
Ester, Martin
Ester, Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ester, Martin', 18)}}的其他基金
Data Mining in Heterogeneous Information Networks with Attributes
具有属性的异构信息网络中的数据挖掘
- 批准号:
RGPIN-2017-04072 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Data Mining in Heterogeneous Information Networks with Attributes
具有属性的异构信息网络中的数据挖掘
- 批准号:
RGPIN-2017-04072 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Data Mining in Heterogeneous Information Networks with Attributes
具有属性的异构信息网络中的数据挖掘
- 批准号:
RGPIN-2017-04072 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Data Mining in Heterogeneous Information Networks with Attributes
具有属性的异构信息网络中的数据挖掘
- 批准号:
RGPIN-2017-04072 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Data Mining in Heterogeneous Information Networks with Attributes
具有属性的异构信息网络中的数据挖掘
- 批准号:
RGPIN-2017-04072 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Data Mining in Heterogeneous Information Networks with Attributes
具有属性的异构信息网络中的数据挖掘
- 批准号:
RGPIN-2017-04072 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Create Program for Computational Methods for the Analysis of the Diversity and Dynamics of Genomes (Create - CMADDG Training Program)
创建基因组多样性和动态分析的计算方法程序(创建 - CMADDG 培训程序)
- 批准号:
433905-2013 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Collaborative Research and Training Experience
Probabilistic Graphical Models for Data Mining and Recommendation in Social Media
社交媒体中数据挖掘和推荐的概率图形模型
- 批准号:
250960-2012 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Graphical Models for Data Mining and Recommendation in Social Media
社交媒体中数据挖掘和推荐的概率图形模型
- 批准号:
250960-2012 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Anomaly detection on smart mobile devices using probabilistic graphical models
使用概率图形模型对智能移动设备进行异常检测
- 批准号:
469682-2014 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Engage Grants Program
相似海外基金
Illuminating the dark metabolome via deep learning and probabilistic graphical models
通过深度学习和概率图模型照亮黑暗代谢组
- 批准号:
544268-2020 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Postgraduate Scholarships - Doctoral
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
- 批准号:
10705838 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS R01HL157879
使用集成概率图形模型进行 COPD 亚型和早期预测 R01HL157879
- 批准号:
10689580 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Illuminating the dark metabolome via deep learning and probabilistic graphical models
通过深度学习和概率图模型照亮黑暗代谢组
- 批准号:
544268-2020 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Postgraduate Scholarships - Doctoral
COPD SUBTYPES AND EARLY PREDICTION USING INTEGRATIVE PROBABILISTIC GRAPHICAL MODELS
使用综合概率图模型进行慢性阻塞性肺病亚型和早期预测
- 批准号:
10206417 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
RI: Small: Anytime Algorithms and Bounds for Probabilistic Graphical Models
RI:小:概率图形模型的随时算法和界限
- 批准号:
2008516 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Illuminating the dark metabolome via deep learning and probabilistic graphical models
通过深度学习和概率图模型照亮黑暗代谢组
- 批准号:
544268-2020 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Postgraduate Scholarships - Doctoral
Formal verification of probabilistic graphical models and its application to artificial intelligence
概率图模型的形式化验证及其在人工智能中的应用
- 批准号:
18H03204 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Use of probabilistic graphical models for bioinformatics
概率图形模型在生物信息学中的应用
- 批准号:
517576-2017 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Engage Grants Program
Space Efficient Probabilistic Graphical Models and Privacy Sensitive Construction of Agent Organizations
代理组织的空间高效概率图形模型和隐私敏感构建
- 批准号:
RGPIN-2016-03616 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual