Space Efficient Probabilistic Graphical Models and Privacy Sensitive Construction of Agent Organizations

代理组织的空间高效概率图形模型和隐私敏感构建

基本信息

  • 批准号:
    RGPIN-2016-03616
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

(1) Rigid, simplistic rules are often used for decision making in personal and mobile devices. For example, a phone number may be placed on a black list, due to the report of a spam call from it, causing future calls from the number to be filtered. The rule ignores the possibility that the report may itself be a spam, leading to undesirable actions. Bayesian Networks (BNs), knowledge based systems capable of weighing complex uncertain context information, can aid users with more intelligent decisions. BNs encode causal relations with graphical structures quantified by probability tables. However, memory needed to run BNs is exponential in the number n of direct causes per variable. When n is large, the required memory may exceed that of a smart phone or sensor, limiting deployment of BNs in such devices.To overcome that, this research seeks to reduce memory requirement for running BNs to being linear in n. It explores innovatively a recent modeling technique, Non-impeding noisy-AND Tree (NAT), to approximate probability tables in BNs. NAT models take the memory linear in n and promise to approximate BN probability tables more accurately than existing techniques. How to best approximate BNs with NAT modeling and how to reason with NAT modeled BNs within linear memory will be investigated. Its success will dramatically reduce memory required for probabilistic reasoning with BNs, allow software engineers to deploy BNs in pervasive computing devices, and enable intelligent decisions in an unprecedented range of applications. (2) Cooperative intelligent systems (called agents) are well suited for applications such as monitoring complex equipment or collaborative design in supply chains. Agent cooperation is often through an organization. The so-called Junction Tree (JT) is one such organization and is found superior than the often used pseudotrees. An agent can embed rich knowledge, e.g., about an equipment component, that is proprietary to component vendor and needs to remain private. However, common methods to construct JT organizations suffer from breach of such privacy. As a result, vendors run the risk of losing intellectual properties.To improve privacy in these intelligent systems, this research studies how to construct JT organizations without privacy loss if possible and with the minimum loss if unavoidable. Flexible JT organization construction will be devised with privacy protection to handle changes in system composition, e.g., when a component and its agent are added. Feasibility of fully autonomous, privacy protecting JT construction, i.e., without using an externally specified leader agent, will be investigated. Successful completion of this research will close a loop hole on privacy in agent systems based on JT organizations. The strong privacy guarantee, coupled with other superior computational properties of JT organizations, will make these agent systems more widely applicable.
(1)在个人和移动的设备中,经常使用僵化、简单化的规则进行决策。例如,电话号码可能会被列入黑名单,因为报告了来自该号码的垃圾电话,导致来自该号码的未来电话被过滤。该规则忽略了报告本身可能是垃圾邮件的可能性,从而导致不受欢迎的操作。贝叶斯网络(BN),基于知识的系统,能够权衡复杂的不确定的上下文信息,可以帮助用户更智能的决策。BN编码的因果关系与图形结构量化的概率表。然而,运行BN所需的内存在每个变量的直接原因的数量n方面是指数级的。当n很大时,所需的内存可能超过智能手机或传感器的内存,限制了BN在此类设备中的部署。为了克服这一点,本研究试图将运行BN的内存需求降低到n的线性。它创新地探索了最近的建模技术,非阻碍噪声与树(NAT),近似概率表的BN。NAT模型采用n中的记忆线性,并承诺比现有技术更准确地近似BN概率表。如何最好地近似BN与NAT建模,以及如何与NAT建模BN在线性记忆的原因将被研究。它的成功将大大减少使用BN进行概率推理所需的内存,允许软件工程师在普适计算设备中部署BN,并在前所未有的应用范围内实现智能决策。(2)合作智能系统(称为代理)非常适合应用程序,如监控复杂的设备或供应链中的协同设计。代理人合作往往是通过一个组织。所谓的连接树(JT)就是这样一种组织,并且被发现比经常使用的伪树优越上级。代理可以嵌入丰富的知识,例如,关于设备组件,该组件是组件供应商专有的,需要保持私有。然而,构建JT组织的常见方法遭受侵犯这种隐私。为了改善这些智能系统中的隐私,本研究研究如何构建JT组织,如果可能的话,没有隐私损失,如果不可避免的话,损失最小。灵活的JT组织结构将设计有隐私保护,以处理系统组成的变化,例如,当添加组分及其试剂时。完全自主、隐私保护JT构建的可行性,即,没有使用外部指定的领导者代理,将被调查。这项研究的成功完成将关闭一个环洞的隐私代理系统的基础上JT组织。强大的隐私保证,加上JT组织的其他上级计算属性,将使这些代理系统具有更广泛的适用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiang, Yang其他文献

Secure attribute-based data sharing for resource-limited users in cloud computing
云计算中资源有限的用户基于属性的安全数据共享
  • DOI:
    10.1016/j.cose.2017.08.007
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Li, Jin;Zhang, Yinghui;Xiang, Yang
  • 通讯作者:
    Xiang, Yang
The effect of electric field maximum on the Rabi flopping and generated higher frequency spectra
电场最大值对拉比扑动和产生的更高频谱的影响
  • DOI:
    10.1088/1367-2630/10/10/103028
  • 发表时间:
    2008-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Cui, Ni;Gong, Shangqing;Niu, Yueping;Xiang, Yang;Xu, Zhizhan;Li, Ruxin
  • 通讯作者:
    Li, Ruxin
Phase dependence of cross-phase modulation in asymmetric quantum wells
非对称量子阱中交叉相位调制的相位依赖性
  • DOI:
    10.1016/j.optcom.2010.09.016
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Qi, Yihong;Niu, Yueping;Xiang, Yang;Wang, Helin;Gong, Shangqing
  • 通讯作者:
    Gong, Shangqing
Lack of bombesin receptor-activated protein attenuates bleomycin-induced pulmonary fibrosis in mice.
缺乏铃蟾肽受体激活蛋白可减轻博来霉素诱导的小鼠肺纤维化
  • DOI:
    10.26508/lsa.202201368
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Wang, Hui;Zhang, Wenrui;Liu, Rujiao;Zheng, Jiaoyun;Yao, Xueping;Chen, Hui;Wang, Jie;Weber, Horst Christian;Qin, Xiaoqun;Xiang, Yang;Liu, Chi;Liu, Huijun;Pan, Lang;Qu, Xiangping
  • 通讯作者:
    Qu, Xiangping
Application of artificial intelligence and machine learning for HIV prevention interventions.
  • DOI:
    10.1016/s2352-3018(21)00247-2
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    16.1
  • 作者:
    Xiang, Yang;Du, Jingcheng;Fujimoto, Kayo;Li, Fang;Schneider, John;Tao, Cui
  • 通讯作者:
    Tao, Cui

Xiang, Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiang, Yang', 18)}}的其他基金

Tractable NAT-Modeled Bayesian Networks and Privacy Sensitive Construction of Agent Organizations
易处理的 NAT 模型贝叶斯网络和代理组织的隐私敏感构建
  • 批准号:
    RGPIN-2017-03715
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Tractable NAT-Modeled Bayesian Networks and Privacy Sensitive Construction of Agent Organizations
易处理的 NAT 模型贝叶斯网络和代理组织的隐私敏感构建
  • 批准号:
    RGPIN-2017-03715
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Tractable NAT-Modeled Bayesian Networks and Privacy Sensitive Construction of Agent Organizations
易处理的 NAT 模型贝叶斯网络和代理组织的隐私敏感构建
  • 批准号:
    RGPIN-2017-03715
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Tractable NAT-Modeled Bayesian Networks and Privacy Sensitive Construction of Agent Organizations
易处理的 NAT 模型贝叶斯网络和代理组织的隐私敏感构建
  • 批准号:
    RGPIN-2017-03715
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Tractable NAT-Modeled Bayesian Networks and Privacy Sensitive Construction of Agent Organizations
易处理的 NAT 模型贝叶斯网络和代理组织的隐私敏感构建
  • 批准号:
    RGPIN-2017-03715
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Tractable NAT-Modeled Bayesian Networks and Privacy Sensitive Construction of Agent Organizations
易处理的 NAT 模型贝叶斯网络和代理组织的隐私敏感构建
  • 批准号:
    RGPIN-2017-03715
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Graphical models: Inference, decision and acquisition
图模型:推理、决策和获取
  • 批准号:
    155425-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Graphical models: Inference, decision and acquisition
图模型:推理、决策和获取
  • 批准号:
    155425-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Graphical models: Inference, decision and acquisition
图模型:推理、决策和获取
  • 批准号:
    155425-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Graphical models: Inference, decision and acquisition
图模型:推理、决策和获取
  • 批准号:
    155425-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Collaborative Research: PPoSS: Planning: Efficient and Scalable Learning and Management of Distributed Probabilistic Graphs
协作研究:PPoSS:规划:分布式概率图的高效且可扩展的学习和管理
  • 批准号:
    2217076
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Efficient and Scalable Learning and Management of Distributed Probabilistic Graphs
协作研究:PPoSS:规划:分布式概率图的高效且可扩展的学习和管理
  • 批准号:
    2217104
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Advancing Probabilistic Machine Learning to Deliver Safer, More Efficient, and Predictable Air Traffic Control
推进概率机器学习以提供更安全、更高效和可预测的空中交通管制
  • 批准号:
    EP/V056522/1
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Research Grant
Efficient Human-Robot Interaction with Probabilistic Deep Generative Trajectory Models of Human Behavior
利用人类行为的概率深度生成轨迹模型实现高效的人机交互
  • 批准号:
    545934-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Efficient probabilistic inference and Bayesian non-parametrics with applications in phylogenetics and cancer genomics
高效概率推理和贝叶斯非参数学在系统发育学和癌症基因组学中的应用
  • 批准号:
    RGPIN-2016-04270
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient probabilistic inference and Bayesian non-parametrics with applications in phylogenetics and cancer genomics
高效概率推理和贝叶斯非参数学在系统发育学和癌症基因组学中的应用
  • 批准号:
    RGPIN-2016-04270
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Human-Robot Interaction with Probabilistic Deep Generative Trajectory Models of Human Behavior
利用人类行为的概率深度生成轨迹模型实现高效的人机交互
  • 批准号:
    545934-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Efficient probabilistic inference and Bayesian non-parametrics with applications in phylogenetics and cancer genomics
高效概率推理和贝叶斯非参数学在系统发育学和癌症基因组学中的应用
  • 批准号:
    RGPIN-2016-04270
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Computationally Efficient Probabilistic Solution of Differential Equations
微分方程的计算高效概率解
  • 批准号:
    539568-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Efficient Algorithms for Learning and Testing Structured Probabilistic Models
职业:学习和测试结构化概率模型的有效算法
  • 批准号:
    2011255
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了