"Enhancing the performance limits of nano-structured materials through atomistic modeling, experimental validation and design optimization"

“通过原子建模、实验验证和设计优化提高纳米结构材料的性能极限”

基本信息

  • 批准号:
    418392-2012
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

It is often remarked that the road to success is paved with failure. This is particularly true for materials technology; understanding how materials fail paves the way to make them better. Despite significant breakthroughs in recent decades through nanotechnology, advanced materials typically fail at one-tenth or less of their intrinsic limits, and we do not understand why this is. This failure of advanced structural materials is a principal bottleneck for developing future technologies in a wide range of industrial sectors such as energy, healthcare and aerospace. By itself failure modeling is an age old problem - the novelty comes from the accuracy of details you put in the mathematical model that describes failure. In the past, modeling material failure has been ad-hoc and empirical. The material scientist's dream is to put in basic details of the material into a model and then predict its failure precisely without resorting to ad-hoc parameters. This dream is starting to become achievable through a judicious coordination of computational materials science and experimental validation. This project aims to take empiricism out of failure modeling and make clear-cut progress towards computational materials design.
人们常说,通往成功的道路是由失败铺成的。对于材料技术来说尤其如此;了解材料如何失败为改进它们铺平了道路。尽管近几十年来通过纳米技术取得了重大突破,但先进材料通常会在其固有极限的十分之一或更少时失效,我们不明白为什么会这样。先进结构材料的这种失效是能源、医疗保健和航空航天等广泛工业领域未来技术发展的主要瓶颈。故障建模本身是一个古老的问题-新奇来自于描述故障的数学模型中的细节的准确性。在过去,建模材料故障一直是特设和经验。材料科学家的梦想是将材料的基本细节放入模型中,然后精确地预测其失效,而无需求助于特定参数。通过计算材料科学和实验验证的明智协调,这个梦想开始变得可以实现。该项目的目的是采取破坏模型的精确性,并取得明确的进展,对计算材料设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Singh, ChandraVeer其他文献

Singh, ChandraVeer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Singh, ChandraVeer', 18)}}的其他基金

Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    RGPIN-2018-04642
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    RGPIN-2018-04642
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    RGPIN-2018-04642
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    522649-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    RGPIN-2018-04642
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    RGPIN-2018-04642
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    522649-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
"Enhancing the performance limits of nano-structured materials through atomistic modeling, experimental validation and design optimization"
“通过原子建模、实验验证和设计优化提高纳米结构材料的性能极限”
  • 批准号:
    418392-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental characterization and modeling of mechanical properties of high and intermediate Mn steels
高锰钢和中锰钢机械性能的实验表征和建模
  • 批准号:
    492306-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Engage Grants Program
"Enhancing the performance limits of nano-structured materials through atomistic modeling, experimental validation and design optimization"
“通过原子建模、实验验证和设计优化提高纳米结构材料的性能极限”
  • 批准号:
    418392-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
海洋微藻生物固定燃煤烟气中CO2的性能与机理研究
  • 批准号:
    50806049
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Web服务质量(QoS)控制的策略、模型及其性能评价研究
  • 批准号:
    60373013
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Optimal Design and Performance Limits of Microbial Fuel Cell-based Water Treatment through Model Calculations
通过模型计算微生物燃料电池水处理的优化设计和性能极限
  • 批准号:
    22H01625
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Capacity limits in the neural circuitry of visual word recognition
视觉单词识别神经回路的容量限制
  • 批准号:
    10296072
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Identifying control performance limits for active noise reduction in nonlinear systems
识别非线性系统中主动降噪的控制性能限制
  • 批准号:
    2722947
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
Understanding the limits to biological performance using biorobotic and computational model systems
使用生物机器人和计算模型系统了解生物性能的限制
  • 批准号:
    2903635
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
Breaking Performance Limits of Solar Inverters for a Sustainable Future
突破太阳能逆变器的性能极限,实现可持续发展的未来
  • 批准号:
    DE210100473
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding What Limits Fish Cardiovascular Performance and Environmental Responses
了解鱼类心血管性能和环境反应的限制因素
  • 批准号:
    RGPIN-2016-04481
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Capacity limits in the neural circuitry of visual word recognition
视觉单词识别神经回路的容量限制
  • 批准号:
    10330043
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Capacity limits in the neural circuitry of visual word recognition
视觉单词识别神经回路的容量限制
  • 批准号:
    10534775
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Establishing the Limits of Perceptual Inference for Visual Motion
建立视觉运动感知推理的极限
  • 批准号:
    10318920
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Understanding What Limits Fish Cardiovascular Performance and Environmental Responses
了解鱼类心血管性能和环境反应的限制因素
  • 批准号:
    RGPIN-2016-04481
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了