"Enhancing the performance limits of nano-structured materials through atomistic modeling, experimental validation and design optimization"

“通过原子建模、实验验证和设计优化提高纳米结构材料的性能极限”

基本信息

  • 批准号:
    418392-2012
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

It is often remarked that the road to success is paved with failure. This is particularly true for materials technology; understanding how materials fail paves the way to make them better. Despite significant breakthroughs in recent decades through nanotechnology, advanced materials typically fail at one-tenth or less of their intrinsic limits, and we do not understand why this is. This failure of advanced structural materials is a principal bottleneck for developing future technologies in a wide range of industrial sectors such as energy, healthcare and aerospace. By itself failure modeling is an age old problem - the novelty comes from the accuracy of details you put in the mathematical model that describes failure. In the past, modeling material failure has been ad-hoc and empirical. The material scientist's dream is to put in basic details of the material into a model and then predict its failure precisely without resorting to ad-hoc parameters. This dream is starting to become achievable through a judicious coordination of computational materials science and experimental validation. This project aims to take empiricism out of failure modeling and make clear-cut progress towards computational materials design. Our focus will be on failure modeling in novel nano-structured material systems using computational materials science. State of the art atomistic modeling techniques will be employed to study failure in a variety of materials systems: nanocrystalline microtruss hybrid materials, nanocomposites and nano-engineered alloys. The current research program aims to achieve two major goals:(1) Develop and experimentally validate computational models that can accurately predict properties and failure of these materials without resorting to empirical parameters, and (2) Suggest routes for improving material performance limits through modification at the nanometer level. The applicant's hope is to develop novel material designs by efficiently combining atomistic failure modeling with experimental validation and design optimization.
人们常说成功之路是由失败铺成的。对于材料技术来说尤其如此;了解材料是如何失效的,就能让它们变得更好。尽管近几十年来通过纳米技术取得了重大突破,但先进材料通常在其固有极限的十分之一或更少的情况下失效,我们不明白为什么会这样。这种先进结构材料的失效是在能源、医疗保健和航空航天等广泛工业领域发展未来技术的主要瓶颈。就其本身而言,故障建模是一个古老的问题——新颖性来自于描述故障的数学模型中细节的准确性。过去,材料失效的建模是临时的和经验的。材料科学家的梦想是把材料的基本细节放入一个模型中,然后精确地预测它的失效,而不需要借助于特别的参数。通过计算材料科学和实验验证的明智协调,这个梦想开始变得可以实现。该项目旨在将经验主义从失效建模中剥离出来,并在计算材料设计方面取得明确进展。我们的重点将是利用计算材料科学对新型纳米结构材料系统的失效建模。最先进的原子建模技术将被用于研究各种材料系统的失效:纳米晶微桁架混合材料、纳米复合材料和纳米工程合金。目前的研究计划旨在实现两个主要目标:(1)开发和实验验证计算模型,可以准确预测这些材料的性能和失效,而无需诉诸经验参数;(2)提出通过纳米级修改提高材料性能极限的途径。申请人希望通过有效地将原子失效建模与实验验证和设计优化相结合来开发新颖的材料设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Singh, ChandraVeer其他文献

Singh, ChandraVeer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Singh, ChandraVeer', 18)}}的其他基金

Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    RGPIN-2018-04642
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    RGPIN-2018-04642
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    RGPIN-2018-04642
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    522649-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    RGPIN-2018-04642
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    RGPIN-2018-04642
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Machine Learning Driven Discovery and Design of New Materials for Sustainable Energy and Transport
概率机器学习驱动可持续能源和运输新材料的发现和设计
  • 批准号:
    522649-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Experimental characterization and modeling of mechanical properties of high and intermediate Mn steels
高锰钢和中锰钢机械性能的实验表征和建模
  • 批准号:
    492306-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Engage Grants Program
"Enhancing the performance limits of nano-structured materials through atomistic modeling, experimental validation and design optimization"
“通过原子建模、实验验证和设计优化提高纳米结构材料的性能极限”
  • 批准号:
    418392-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
"Enhancing the performance limits of nano-structured materials through atomistic modeling, experimental validation and design optimization"
“通过原子建模、实验验证和设计优化提高纳米结构材料的性能极限”
  • 批准号:
    418392-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
海洋微藻生物固定燃煤烟气中CO2的性能与机理研究
  • 批准号:
    50806049
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Web服务质量(QoS)控制的策略、模型及其性能评价研究
  • 批准号:
    60373013
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Optimal Design and Performance Limits of Microbial Fuel Cell-based Water Treatment through Model Calculations
通过模型计算微生物燃料电池水处理的优化设计和性能极限
  • 批准号:
    22H01625
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Capacity limits in the neural circuitry of visual word recognition
视觉单词识别神经回路的容量限制
  • 批准号:
    10296072
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Breaking Performance Limits of Solar Inverters for a Sustainable Future
突破太阳能逆变器的性能极限,实现可持续发展的未来
  • 批准号:
    DE210100473
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the limits to biological performance using biorobotic and computational model systems
使用生物机器人和计算模型系统了解生物性能的限制
  • 批准号:
    2903635
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
Identifying control performance limits for active noise reduction in nonlinear systems
识别非线性系统中主动降噪的控制性能限制
  • 批准号:
    2722947
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Studentship
Understanding What Limits Fish Cardiovascular Performance and Environmental Responses
了解鱼类心血管性能和环境反应的限制因素
  • 批准号:
    RGPIN-2016-04481
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Capacity limits in the neural circuitry of visual word recognition
视觉单词识别神经回路的容量限制
  • 批准号:
    10330043
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Capacity limits in the neural circuitry of visual word recognition
视觉单词识别神经回路的容量限制
  • 批准号:
    10534775
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Establishing the Limits of Perceptual Inference for Visual Motion
建立视觉运动感知推理的极限
  • 批准号:
    10318920
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Understanding What Limits Fish Cardiovascular Performance and Environmental Responses
了解鱼类心血管性能和环境反应的限制因素
  • 批准号:
    RGPIN-2016-04481
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了