An infrastructure for analysing the performance of computational imaging algorithms on modern hardware

用于分析现代硬件上计算成像算法性能的基础设施

基本信息

  • 批准号:
    500612-2016
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Numerous applications, such as those in medical imaging, film production, automotive and robotics, use imaging sensors (IS) to convert light to signals appropriate for further processing and storage by digital devices. IS output is imperfect and requires significant processing in the digital domain to yield acceptable results. For example, lens imperfections result in distorted output, while sensor sensitivity may yield output that is underexposed or overexposed at places and thus missing crucial information. Computational Imaging (CI) is the processing in the digital domain of IS output can compensate for these limitations. However, further advances in CI sophistication are severely limited by hardware performance. Specifically, at the heart of every computing device, there are one or more processing cores that manipulate data values and move them among storage devices or devices that interact with the physical world such as displays and touch screens. Existing general purpose processing cores are not keeping pace with the computational power demands of CI applications. For several decades, core performance, that is the rate at which data values could be manipulated or moved around, has doubled every two years. This has enabled advances in application sophistication and breadth. Application developers could rely on this trend of performance increase and plan ahead innovations to
许多应用,例如医学成像、电影制作、汽车和机器人技术中的应用,使用成像传感器(IS)将光转换为适合于数字设备进一步处理和存储的信号。IS输出是不完美的,并且需要在数字域中进行大量处理以产生可接受的结果。例如,透镜缺陷导致失真的输出,而传感器灵敏度可能产生在某些地方曝光不足或曝光过度的输出,从而丢失关键信息。计算成像(CI)是IS输出的数字域处理,可以弥补这些限制。然而,CI复杂性的进一步发展受到硬件性能的严重限制。具体地说,在每个计算设备的核心,都有一个或多个处理核心,它们操纵数据值并在存储设备或与物理世界交互的设备(如显示器和触摸屏)之间移动它们。现有的通用处理核不能跟上CI应用的计算能力需求。几十年来,核心性能,即数据值可以被操纵或移动的速度,每两年翻一番。这使得应用程序的复杂性和广度得以提高。应用程序开发人员可以依靠这种性能提高的趋势,并提前计划创新,

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moshovos, Andreas其他文献

Value-Based Deep-Learning Acceleration
  • DOI:
    10.1109/mm.2018.112130309
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Moshovos, Andreas;Albericio, Jorge;Jerger, Natalie Enright
  • 通讯作者:
    Jerger, Natalie Enright

Moshovos, Andreas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moshovos, Andreas', 18)}}的其他基金

Deep Learning Hardware: Enabling the next wave of applications and innovation
深度学习硬件:实现下一波应用和创新浪潮
  • 批准号:
    RGPIN-2017-06064
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC COHESA: Computing Hardware for Emerging Intelligent Sensory Applications
NSERC COHESA:用于新兴智能传感应用的计算硬件
  • 批准号:
    485577-2015
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Strategic Network Grants Program
A Business / Market Opportunity Assessment for Hardware Concepts & Device Designs for Brain-Machine Interfacing
硬件概念的商业/市场机会评估
  • 批准号:
    571002-2022
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Idea to Innovation
NSERC COHESA: Computing Hardware for Emerging Intelligent Sensory Applications
NSERC COHESA:用于新兴智能传感应用的计算硬件
  • 批准号:
    485577-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Strategic Network Grants Program
Deep Learning Hardware: Enabling the next wave of applications and innovation
深度学习硬件:实现下一波应用和创新浪潮
  • 批准号:
    RGPIN-2017-06064
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Deep Learning Hardware: Enabling the next wave of applications and innovation
深度学习硬件:实现下一波应用和创新浪潮
  • 批准号:
    DGDND-2017-00010
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
NSERC COHESA: Computing Hardware for Emerging Intelligent Sensory Applications
NSERC COHESA:用于新兴智能传感应用的计算硬件
  • 批准号:
    485577-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Strategic Network Grants Program
Deep Learning Hardware: Enabling the next wave of applications and innovation
深度学习硬件:实现下一波应用和创新浪潮
  • 批准号:
    RGPIN-2017-06064
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
A novel system architecture for online operational analytics
用于在线运营分析的新颖系统架构
  • 批准号:
    463355-2014
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Strategic Projects - Group
Deep Learning Hardware: Enabling the next wave of applications and innovation
深度学习硬件:实现下一波应用和创新浪潮
  • 批准号:
    RGPIN-2017-06064
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Treekind(R) by Biophilica - Analysing Flex Performance of Textile-backed Samples Relative to Tensile Strength and Compression
Biophilica 的 Treekind(R) - 分析织物背衬样品相对于拉伸强度和压缩的弯曲性能
  • 批准号:
    10074779
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
DOT: Software helping developer teams increase performance and wellbeing by analysing productivity and collaboration data
DOT:通过分析生产力和协作数据帮助开发团队提高绩效和福祉的软件
  • 批准号:
    10017654
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
An Ontological Approach to Modelling and Analysing System Performance
系统性能建模和分析的本体论方法
  • 批准号:
    RGPIN-2014-06508
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Analysing the links between microclimate, individual performance and climate-driven range shifts in intertidal ectotherms
分析潮间带变温带微气候、个人表现和气候驱动的范围变化之间的联系
  • 批准号:
    2107883
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
An Ontological Approach to Modelling and Analysing System Performance
系统性能建模和分析的本体论方法
  • 批准号:
    RGPIN-2014-06508
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
An Ontological Approach to Modelling and Analysing System Performance
系统性能建模和分析的本体论方法
  • 批准号:
    RGPIN-2014-06508
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
PEnDAR - Performance ENsurance by Design, Analysing Requirements
PEnDAR - 通过设计、分析需求来确保性能
  • 批准号:
    132304
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Feasibility Studies
An Ontological Approach to Modelling and Analysing System Performance
系统性能建模和分析的本体论方法
  • 批准号:
    RGPIN-2014-06508
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Analysing trade-offs between the energy and social performance of urban morphologies
分析城市形态的能源与社会绩效之间的权衡
  • 批准号:
    245587512
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grants
An Ontological Approach to Modelling and Analysing System Performance
系统性能建模和分析的本体论方法
  • 批准号:
    RGPIN-2014-06508
  • 财政年份:
    2014
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了