Methods for Development of Optimized Complex Expert Systems
优化复杂专家系统的开发方法
基本信息
- 批准号:RGPIN-2014-04486
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Expert systems (ie, computer systems that emulate the decision-making ability of a human expert) can support decision-making in numerous fields including medicine, finance, and aviation. In our digital age, more data is being collected than ever before. This is particularly true in healthcare for both clinicians and patients who try to manage complex (multiple) chronic conditions. New sources of health data, including continuous physiological measurements taken with home medical devices can now be factored in for decision-making. In addition, computerized access to lab results and medication lists can now be leveraged for use in expert systems for both patients and clinicians. While all these data may be relevant, people have the ability to assimilate only a limited amount of information for decision-making.
Reported studies have indicated that expert systems supporting clinical decision-making can improve the performance of healthcare providers especially for purposes of diagnosing, but research on their use with patients are few. In addition, the processes to develop expert systems that incorporate varied and continuous sources of patient data, such as physiological data from the patient’s home, have not been well studied. This research is timely not only because of the proliferation of novel and large data sources, but also because of the recent awareness of the significant impact of poor self-care and suboptimal clinical management of people with multiple chronic conditions (5% of the population consumes > 50% of all dollars devoted to healthcare). However, expert systems used in healthcare must meet an especially high level of rigor in terms of ensuring safety, due to the potential serious negative consequences of inappropriate recommendations from the expert systems.
This Discovery Grant would support research investigating and applying expert systems for complex decision-making that incorporates emerging sources of data. This will include investigation into: 1) methods to program and visualize complex expert systems 2) the applicability of different types of logic to be used in expert systems, 3) the safety and utility of embedding user preferences into expert systems, and 4) the role and methods to integrate novel data sources into expert systems for chronic disease management. In particular, this Discovery Grant will fund graduate students to research three specific projects:1) investigate the processes to develop optimized patient expert systems, 2) investigate the processes to develop optimized clinician expert systems, and 3) determine how to incorporate patient health record (PHR) data into expert systems.
Many of the processes, techniques, and insights could be applied to other fields. For example, expert systems could be developed that incorporate the growing available data on an individual’s spending, savings, and investments to support their financial decision-making. Future planned research includes investigation into increasingly complex healthcare expert systems (ie, incorporating additional sources of data such as genomics) and other areas of artificial intelligence (eg, predictions of health outcomes or acute events). A process to create optimized expert systems can help manage the "big data challenge" in many sectors.
专家系统(即模拟人类专家决策能力的计算机系统)可以支持许多领域的决策,包括医学,金融和航空。在我们的数字时代,收集的数据比以往任何时候都多。对于试图管理复杂(多种)慢性疾病的临床医生和患者来说,这在医疗保健中尤其如此。新的健康数据来源,包括使用家用医疗设备进行的连续生理测量,现在可以作为决策的因素。此外,现在可以利用计算机访问实验室结果和药物列表,用于患者和临床医生的专家系统。虽然所有这些数据可能都是相关的,但人们只能吸收有限的决策信息。
报告的研究表明,支持临床决策的专家系统可以提高医疗服务提供者的性能,特别是用于诊断的目的,但他们的使用与患者的研究很少。此外,还没有很好地研究开发专家系统的过程,该专家系统结合了患者数据的各种和连续的来源,例如来自患者家中的生理数据。这项研究是及时的,不仅因为大量新数据源的激增,而且因为最近意识到患有多种慢性病的人的自我护理不良和次优临床管理的重大影响(5%的人口消耗> 50%的医疗保健资金)。然而,在医疗保健中使用的专家系统必须满足在确保安全性方面的特别高的严格性水平,由于来自专家系统的不适当的建议的潜在的严重的负面后果。
这项发现补助金将支持研究调查和应用专家系统进行复杂的决策,其中包括新兴的数据来源。这将包括调查:1)方法来编程和可视化复杂的专家系统2)不同类型的逻辑在专家系统中使用的适用性,3)嵌入用户偏好到专家系统的安全性和实用性,以及4)的作用和方法,将新的数据源集成到专家系统的慢性病管理。特别是,这项发现补助金将资助研究生研究三个具体项目:1)调查开发优化的患者专家系统的过程,2)调查开发优化的临床医生专家系统的过程,以及3)确定如何将患者健康记录(PHR)数据纳入专家系统。
许多过程、技术和见解可以应用于其他领域。例如,可以开发专家系统,将个人支出、储蓄和投资方面不断增长的可用数据纳入其中,以支持他们的财务决策。未来计划的研究包括调查日益复杂的医疗保健专家系统(即,纳入其他数据源,如基因组学)和人工智能的其他领域(例如,预测健康结果或急性事件)。创建优化专家系统的过程可以帮助管理许多部门的“大数据挑战”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seto, Emily其他文献
A "Do No Harm" Novel Safety Checklist and Research Approach to Determine Whether to Launch an Artificial Intelligence-Based Medical Technology: Introducing the Biological-Psychological, Economic, and Social (BPES) Framework.
- DOI:
10.2196/43386 - 发表时间:
2023-04-05 - 期刊:
- 影响因子:7.4
- 作者:
Khan, Waqas Ullah;Seto, Emily - 通讯作者:
Seto, Emily
A digital self-care intervention for Ugandan patients with heart failure and their clinicians: User-centred design and usability study.
- DOI:
10.1177/20552076221129064 - 发表时间:
2022-01 - 期刊:
- 影响因子:3.9
- 作者:
Hearn, Jason;Wali, Sahr;Birungi, Patience;Cafazzo, Joseph A.;Ssinabulya, Isaac;Akiteng, Ann R.;Ross, Heather J.;Seto, Emily;Schwartz, Jeremy, I - 通讯作者:
Schwartz, Jeremy, I
A Mobile Phone-Based Telemonitoring Program for Heart Failure Patients After an Incidence of Acute Decompensation (Medly-AID): Protocol for a Randomized Controlled Trial
- DOI:
10.2196/15753 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:1.7
- 作者:
Seto, Emily;Ross, Heather;Poon, Stephanie - 通讯作者:
Poon, Stephanie
Nurse-Led Models of Care for Patients with Complex Chronic Conditions: A Scoping Review.
- DOI:
10.12927/cjnl.2019.25972 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:0
- 作者:
Gordon, Kayleigh;Gray, Carolyn Steele;Seto, Emily - 通讯作者:
Seto, Emily
Digital Health Interventions for Depression and Anxiety Among People With Chronic Conditions: Scoping Review.
慢性病患者的抑郁和焦虑的数字健康干预措施:范围审查。
- DOI:
10.2196/38030 - 发表时间:
2022-09-26 - 期刊:
- 影响因子:7.4
- 作者:
Shah, Amika;Hussain-Shamsy, Neesha;Strudwick, Gillian;Sockalingam, Sanjeev;Nolan, Robert P.;Seto, Emily - 通讯作者:
Seto, Emily
Seto, Emily的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seto, Emily', 18)}}的其他基金
Methods for Development of Optimized Complex Expert Systems
优化复杂专家系统的开发方法
- 批准号:
RGPIN-2014-04486 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Methods for Development of Optimized Complex Expert Systems
优化复杂专家系统的开发方法
- 批准号:
RGPIN-2014-04486 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Methods for Development of Optimized Complex Expert Systems
优化复杂专家系统的开发方法
- 批准号:
RGPIN-2014-04486 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Methods for Development of Optimized Complex Expert Systems
优化复杂专家系统的开发方法
- 批准号:
RGPIN-2014-04486 - 财政年份:2015
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Methods for Development of Optimized Complex Expert Systems
优化复杂专家系统的开发方法
- 批准号:
RGPIN-2014-04486 - 财政年份:2014
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Development of individualized optimized neurorehabilitation to promote recovery of motor function after stroke
开发个体化优化神经康复以促进中风后运动功能的恢复
- 批准号:
23K10417 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Optimized Reversible Pin1 Inhibitors to Block Multiple Cancer-Driving Pathways and to Disrupt Immunosuppressive Tumor Microenvironment
开发优化的可逆 Pin1 抑制剂以阻断多种癌症驱动途径并破坏免疫抑制肿瘤微环境
- 批准号:
494870 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Operating Grants
Development of M-Drive: A recyclable Mucor-optimized CAS9 gene-drive system cable of multi-target gene editing
开发M-Drive:可回收的多靶点基因编辑的毛霉优化CAS9基因驱动系统电缆
- 批准号:
10727359 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Therapeutic Relevance of Abnormal Airway Morphology in Asthma: A Path to Optimized Management and Drug Development (AirPATH Study)
哮喘气道形态异常的治疗相关性:优化管理和药物开发的途径(AirPATH 研究)
- 批准号:
490077 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Operating Grants
Development of optimized adeno-associated viral capsids for muscle gene therapy
开发用于肌肉基因治疗的优化腺相关病毒衣壳
- 批准号:
10758732 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
The Development of Mathematical Models using Machine Learning with Educational Big Data for Language Acquisition and Individually Optimized Learning
利用机器学习和教育大数据开发数学模型,用于语言习得和个体优化学习
- 批准号:
23K00651 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of optimized AAVrh74 vectors for gene therapy of muscular dystrophies
开发用于肌营养不良症基因治疗的优化 AAVrh74 载体
- 批准号:
10597357 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Development of antibody design optimized for active targeting
开发针对主动靶向优化的抗体设计
- 批准号:
22H02935 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of an optimized electrochemical modular system to transform captured CO2 into formate salt as deicing agent
开发优化的电化学模块化系统,将捕获的二氧化碳转化为甲酸盐作为除冰剂
- 批准号:
570918-2021 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Applied Research and Development Grants - Level 3
Development of an optimized pilot-scale process for extraction and purification of polyphenols contained in residual leaves of cranberry
开发用于提取和纯化蔓越莓残叶中所含多酚的优化中试工艺
- 批准号:
548793-2019 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Applied Research and Development Grants - Level 2