Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
基本信息
- 批准号:RGPIN-2014-05675
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Important challenges and opportunities in information technology and alternative energy can be addressed using novel thin film materials and nanostructures. The context for this proposal falls into the following areas: spintronics; magnonics; magnetic recording (hard drives [HDs]); and photovoltaics.
Spin-based devices present a number of opportunities and advantages compared to conventional charge-based electronics. As device density is increased, overall energy dissipation increases, which is a considerable obstacle in current electronic architecture. As well as Joule heating, the effects of electromigration and capacitive coupling are also major concerns. Spin-based devices overcome these problems by processing and transporting information using pure spin currents, without net charge flow. Information stored by magnetic means is also inherently non-volatile.
Another way of transferring information is via spin waves. My research will explore a new direction – magnonic crystals. These are arrays of magnetic nanostructures, coupled by dipolar forces, in which band-structure engineering of the spin wave dispersion allows for the controlled propagation of spin waves. Inspired by photonic band-gap materials, this is a very promising new direction in spintronics.
In the area of magnetic recording (the main way of storing information for more than 30 years), there is a search for new composite materials, structures, and magnetization reversal schemes, with the goal of creating thermally stable magnetization and manipulating it at ever-decreasing dimensions. To increase the recording density of HDs, the diameter of magnetic grains in recording media has to be reduced. This requires the use of ordered 3d-4d, 3d-5d, and 3d-4f compounds, which have much larger magnetic anisotropy values than the disordered hcp CoPt, used in current media. There are two main challenges that we are addressing in collaboration with the recording industry: 1) fabrication of ordered magnetic compounds that needs to be carried out above 400°C (current media are fabricated at ambient temperature); and 2) the design of a nonuniform magnetization reversal along the direction of the grain growth to facilitate the magnetization reversal in grains with such large magnetic anisotropy.
We are part of the large research effort at SFU aiming to develop novel materials for photovoltaic applications. One goal is to develop low cost, high efficiency solar cells. II-VI compound semiconductors, in particular quaternary CZTS (copper tin zinc sulfide) compounds, have drawn considerable attention because they consist of abundant, low-cost materials. The quaternary compounds have increased flexibility in material properties, relative to binary and ternary semiconductors, but at the same, they have a large variety of intrinsic lattice defects, which significantly deteriorate their photovoltaic performance. We plan to grow single crystal CZTS films along different crystallographic orientations and investigate the effect of growth on the defect density, the presence of secondary phases, and the electrical properties of CZTS films. A long term objective is to explore ways to integrate III-V and II-VI semiconductors into multijunction solar cells using the extensive III-V facilities at SFU. Solar cell research is vital to making Canadian industry world leaders in the field. Developing this technology could significantly reduce Canada’s greenhouse emissions, slow global warming, and demonstrate Canadian leadership with regards to environmental protection.
信息技术和替代能源的重要挑战和机遇可以使用新型薄膜材料和纳米结构来解决。该提案的背景福尔斯分为以下几个领域:自旋电子学、磁振子学、磁记录(硬盘驱动器[HD])和光子学。
与传统的基于电荷的电子器件相比,基于自旋的器件呈现出许多机会和优势。随着器件密度的增加,整体能量耗散增加,这是当前电子架构中的相当大的障碍。除了焦耳热,电迁移和电容耦合的影响也是主要的问题。基于自旋的器件通过使用纯自旋电流来处理和传输信息而克服了这些问题,而没有净电荷流。通过磁性方式存储的信息也具有固有的非易失性。
另一种传递信息的方式是通过自旋波。我的研究将探索一个新的方向-磁振子晶体。这些是磁性纳米结构的阵列,通过偶极力耦合,其中自旋波色散的带结构工程允许自旋波的受控传播。受光子带隙材料的启发,这是自旋电子学中一个非常有前途的新方向。
在磁记录(30多年来存储信息的主要方式)领域,人们正在寻找新的复合材料、结构和磁化反转方案,目标是创造热稳定的磁化并以不断减小的尺寸对其进行操纵。为了提高硬盘的记录密度,必须减小记录介质中磁性颗粒的直径。这需要使用有序的3d-4d、3d-5d和3d-4f化合物,其具有比当前介质中使用的无序hcp CoPt大得多的磁各向异性值。我们正在与记录行业合作解决两个主要挑战:1)需要在400°C以上进行的有序磁性化合物的制造(当前介质在环境温度下制造);以及2)沿着晶粒生长方向沿着非均匀磁化反转的设计,以促进具有如此大的磁各向异性的晶粒中的磁化反转。
我们是SFU大型研究工作的一部分,旨在开发用于光伏应用的新型材料。一个目标是开发低成本、高效率的太阳能电池。II-VI族化合物半导体,特别是四元CZTS(铜锡锌硫化物)化合物,由于其由丰富的低成本材料组成而引起了相当大的关注。相对于二元和三元半导体,四元化合物在材料性质上具有增加的灵活性,但同时,它们具有各种各样的固有晶格缺陷,这显著劣化了它们的光伏性能。我们计划沿着沿着不同的晶体取向生长单晶CZTS薄膜,并研究生长对缺陷密度、第二相的存在以及CZTS薄膜的电学性质的影响。一个长期目标是探索如何将III-V族和II-VI族半导体集成到多结太阳能电池中,使用SFU广泛的III-V族设施。太阳能电池的研究是至关重要的,使加拿大工业在该领域的世界领导者。开发这项技术可以大大减少加拿大的温室气体排放,减缓全球变暖,并展示加拿大在环境保护方面的领导地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Girt, Erol其他文献
Magnetic properties of Co/Ni multilayer structures for use in STT-RAM
- DOI:
10.1088/1361-6463/aa97fa - 发表时间:
2017-12-20 - 期刊:
- 影响因子:3.4
- 作者:
Arora, M.;Lee-Hone, N. R.;Girt, Erol - 通讯作者:
Girt, Erol
Spin transport in tantalum studied using magnetic single and double layers
- DOI:
10.1103/physrevb.94.054416 - 发表时间:
2016-08-12 - 期刊:
- 影响因子:3.7
- 作者:
Montoya, Eric;Omelchenko, Pavlo;Girt, Erol - 通讯作者:
Girt, Erol
Measurements of interlayer exchange coupling of Pt in Py|pt|Py system
- DOI:
10.1063/1.5050935 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:4
- 作者:
Omelchenko, Pavlo;Heinrich, Bret;Girt, Erol - 通讯作者:
Girt, Erol
Spin Torque Switching in Nanopillars With Antiferromagnetic Reference Layer
- DOI:
10.1109/lmag.2016.2617319 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:1.2
- 作者:
Arora, Monika;Fowley, Ciaran;Girt, Erol - 通讯作者:
Girt, Erol
Quantum Well State Induced Oscillation of Pure Spin Currents in Fe/Au/Pd(001) Systems
- DOI:
10.1103/physrevlett.113.136601 - 发表时间:
2014-09-24 - 期刊:
- 影响因子:8.6
- 作者:
Montoya, Eric;Heinrich, Bret;Girt, Erol - 通讯作者:
Girt, Erol
Girt, Erol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Girt, Erol', 18)}}的其他基金
Interface induced magnetic properties of thin films
薄膜的界面感应磁特性
- 批准号:
RGPIN-2019-07203 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Interface induced magnetic properties of thin films
薄膜的界面感应磁特性
- 批准号:
RGPIN-2019-07203 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel designs of Spin Torque Transfer Magnetic Random Access Memory (STT-MRAM) devices
自旋转矩传递磁性随机存取存储器(STT-MRAM)器件的新颖设计
- 批准号:
561528-2021 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Idea to Innovation
New sputter deposition capabilities for growth of metal-oxide multilayers
用于金属氧化物多层生长的新溅射沉积能力
- 批准号:
RTI-2022-00673 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Research Tools and Instruments
Interface induced magnetic properties of thin films
薄膜的界面感应磁特性
- 批准号:
RGPIN-2019-07203 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Interface induced magnetic properties of thin films
薄膜的界面感应磁特性
- 批准号:
RGPIN-2019-07203 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
- 批准号:
RGPIN-2014-05675 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
- 批准号:
RGPIN-2014-05675 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Novel nanomagnetic structures, materials and devices
新型纳米磁性结构、材料和器件
- 批准号:
RGPIN-2014-05675 - 财政年份:2015
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Canada Research Chair in Novel Magnetic Materials
加拿大新型磁性材料研究主席
- 批准号:
1000210582-2008 - 财政年份:2014
- 资助金额:
$ 2.62万 - 项目类别:
Canada Research Chairs
相似海外基金
Nanomagnetic arrays for novel computation
用于新颖计算的纳米磁性阵列
- 批准号:
2907858 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Studentship
Three-Dimensional Multilayer Nanomagnetic Arrays for Neuromorphic Low-Energy Magnonic Processing
用于神经形态低能磁处理的三维多层纳米磁性阵列
- 批准号:
EP/Y003276/1 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Research Grant
LIONESS - Light-controlled nanomagnetic and spintronic applications via magneto-thermoplasmonics
LIONESS - 通过磁热等离子体的光控纳米磁性和自旋电子应用
- 批准号:
MR/X033910/1 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Fellowship
CAREER: Toward energy-efficient bio-inspired magnonic processing with nanomagnetic arrays
职业:利用纳米磁性阵列实现节能的仿生磁力处理
- 批准号:
2339475 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Continuing Grant
Infrared sensor for screening of emerging contaminants in water
用于筛查水中新兴污染物的红外传感器
- 批准号:
10482183 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Fusion of nanomagnetic and viral tools to interrogate brain-body circuits
融合纳米磁性和病毒工具来询问脑体回路
- 批准号:
10672302 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Nanomagnetic-guided tau-centric protein transport in neurons
纳米磁引导神经元中以 tau 为中心的蛋白质运输
- 批准号:
10187076 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Fusion of nanomagnetic and viral tools to interrogate brain-body circuits
融合纳米磁性和病毒工具来询问脑体回路
- 批准号:
10261671 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Point-of-Care Microfluidic Biochip for Biomarkers Monitoring for Contributing in Early Sepsis Diagnosis
用于生物标志物监测的护理点微流控生物芯片有助于早期脓毒症诊断
- 批准号:
10462484 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Multifunctional Nanoplatforms-Based Capture and identification of Circulating Tumor Biomarkers for Early Diagnosis of Lung Cancer
基于多功能纳米平台的循环肿瘤生物标志物的捕获和鉴定,用于肺癌的早期诊断
- 批准号:
10402411 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别: