Explicit methods in number theory

数论中的显式方法

基本信息

  • 批准号:
    RGPIN-2014-05742
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

L-functions play a fundamental role in number theory and encode deep information concerning a wide variety of important arithmetic objects such as prime numbers, elliptic curves, abelian varieties, number fields, and automorphic forms. In spite of their central role, L-functions remain largely mysterious. The goal of this project is to investigate fundamental properties of L-functions, specifically concerning their values and zeros. I will focus my efforts on several areas: the moments and value distribution of the Riemann zeta function and other L-functions, ranks of elliptic curves, identities for L-functions, explicit methods and algorithms for computing the values and zeros of L-functions. The problems that I will address will include: 1) How are the values of the Riemann zeta function distributed? Even the basic question of how large the Riemann zeta function can get, up to given height, is not well understood. Motivated by insights provided by random matrix theory, I believe it should be possible to obtain the full *uniform* asymptotics of the moments and then deduce detailed information regarding the value distribution of the zeta function, including its maximal size. 2) I have discovered a number of useful identities for the Riemann zeta function and Dirichlet L-functions. These formulas are along classical lines but seem to have been missed. They are based on summation methods that I have joyfully explored. The identities can be used to study these L-functions from an analytic point of view, and also for purposes of high precision numerical computation. The formulas also show how different L-functions interrelate. I plan to explore whether any of the methods used can be applied to higher degree L-functions, such as those arising from classical modular forms. 3) I have previously done much work confirming detailed conjectures for the moments of various families of L-functions. An interesting feature occurs for quadratic twists of the zeta function. The theory of multiple Dirichlet series predicts extra lower terms for the cubic and higher moments of these L-functions. Earlier, with my grad student Alderson, we developed algorithms in order to test for these lower terms. Our results were encouraging and do seem to confirm such terms. However, the small constants involved and very noisy remainder term conspire to make it hard to claim conclusive numerical evidence in favour of the extra lower terms. Several avenues of research are proposed. The first is to examine a similar prediction for quadratic twists of elliptic curve L-functions. This will provide a richer data set with which to test for extra lower terms. Another idea, in the case of quadratic Dirichlet L-functions, would be to develop faster algorithms, based on the Fourier expansion of related Eisenstein series, and gather more data. I will also examine function field zeta functions, where a parallel theory suggests the existence of extra lower terms. 4) How large can the rank of an elliptic curve get? Can one find elliptic curves with unusual properties? How efficiently can one compute the rank of an elliptic curve? How often does an elliptic curve have non-trivial rank? These are some of the questions that I plan to investigate. 5) I plan to work on improving algorithms, from the point of view of computational complexity, for computing zeros and values of L-functions. My research will contribute to the field of number theory, providing fundamental and important advances in knowledge, and also resulting in the training of highly qualified personnel.
l -函数在数论中起着重要的作用,它编码了关于各种重要算术对象的深层信息,如素数、椭圆曲线、阿贝尔变分、数域和自同构形式。尽管l -函数具有核心作用,但它们在很大程度上仍然是神秘的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rubinstein, Michael其他文献

Phase-Based Video Motion Processing
  • DOI:
    10.1145/2461912.2461966
  • 发表时间:
    2013-07-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Wadhwa, Neal;Rubinstein, Michael;Freeman, William T.
  • 通讯作者:
    Freeman, William T.
Nanorheology of Entangled Polymer Melts
  • DOI:
    10.1103/physrevlett.120.057801
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Ge, Ting;Grest, Gary S.;Rubinstein, Michael
  • 通讯作者:
    Rubinstein, Michael
Surface-Anchored Poly(N-isopropylacrylamide) Orthogonal Gradient Networks.
  • DOI:
    10.1021/acs.macromol.6b01048
  • 发表时间:
    2016-07-26
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Pandiyarajan, C. K.;Rubinstein, Michael;Genzer, Jan
  • 通讯作者:
    Genzer, Jan
Diffusion of Thin Nanorods in Polymer Melts.
  • DOI:
    10.1021/acs.macromol.1c00989
  • 发表时间:
    2021-08-10
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Wang, Jiuling;O'Connor, Thomas C.;Grest, Gary S.;Zheng, Yitong;Rubinstein, Michael;Ge, Ting
  • 通讯作者:
    Ge, Ting
Hopping Diffusion of Nanoparticles in Polymer Matrices.
  • DOI:
    10.1021/ma501608x
  • 发表时间:
    2015-02-10
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Cai, Li-Heng;Panyukov, Sergey;Rubinstein, Michael
  • 通讯作者:
    Rubinstein, Michael

Rubinstein, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rubinstein, Michael', 18)}}的其他基金

Analytic number theory and random matrix theory
解析数论和随机矩阵论
  • 批准号:
    RGPIN-2019-05037
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic number theory and random matrix theory
解析数论和随机矩阵论
  • 批准号:
    RGPIN-2019-05037
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic number theory and random matrix theory
解析数论和随机矩阵论
  • 批准号:
    RGPIN-2019-05037
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic number theory and random matrix theory
解析数论和随机矩阵论
  • 批准号:
    RGPIN-2019-05037
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit methods in number theory
数论中的显式方法
  • 批准号:
    RGPIN-2014-05742
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit methods in number theory
数论中的显式方法
  • 批准号:
    RGPIN-2014-05742
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit methods in number theory
数论中的显式方法
  • 批准号:
    RGPIN-2014-05742
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Explicit methods in number theory
数论中的显式方法
  • 批准号:
    RGPIN-2014-05742
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
L-functions and automorphic forms
L-函数和自守形式
  • 批准号:
    288303-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
L-functions and automorphic forms
L-函数和自守形式
  • 批准号:
    288303-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Functional characterization of schizophrenia rare variants using genetically engineered human iPSCs
使用基因工程人类 iPSC 进行精神分裂症罕见变异的功能表征
  • 批准号:
    10554598
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
The Genetics of Personalized Functional MRI Networks
个性化功能 MRI 网络的遗传学
  • 批准号:
    10650032
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Identifying structural variants influencing human health in population cohorts
识别影响人群健康的结构变异
  • 批准号:
    10889519
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Effect of APP copy number variants in Alzheimer's disease and and Down Syndrome on Reelin expression and function
阿尔茨海默病和唐氏综合症中 APP 拷贝数变异对 Reelin 表达和功能的影响
  • 批准号:
    10760161
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Cell cycle timing and molecular mechanisms of structural variant formation following incomplete replication
不完全复制后结构变异形成的细胞周期时间和分子机制
  • 批准号:
    10656861
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Understanding Genetic Complexity in Spina Bifida
了解脊柱裂的遗传复杂性
  • 批准号:
    10750235
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Targeting Oncogenic Pathways in Genetically Complex Sarcomas
靶向遗传复杂肉瘤的致癌途径
  • 批准号:
    10932623
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Consequences of retrotransposition on genome integrity
逆转录转座对基因组完整性的影响
  • 批准号:
    10736406
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Understanding Rare Genetic Variation and Disease Risk: A Global Neurogenetics Initiative
了解罕见的遗传变异和疾病风险:全球神经遗传学倡议
  • 批准号:
    10660098
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Non-APOL1 genetic factors and kidney transplant outcomes
非 APOL1 遗传因素与肾移植结果
  • 批准号:
    10717171
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了