Towards biomimetic control of robotic or paralyzed limbs
实现机器人或瘫痪肢体的仿生控制
基本信息
- 批准号:RGPIN-2014-05886
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our long-term objectives are to learn from biological movement and devise efficient and novel control strategies for artificial systems (robots, prostheses) and for assisted human control (FES, neural interfaces). To date, we have focused on two streams in parallel sub-objectives:
1- New analytical tools applicable to biological movement systems in the difficult context of non-linear parametric fields, switched hybrid strategies and imposed topologies. Funded by NSERC in the past, we produced software innovations now supported by NSERC/ I2I: to create automated classification of response modes in switched systems and identification tools to estimate the dynamics of each mode despite switching characteristics. They are targeted for distribution to Neuroscientists, Neuro-otologists and Clinicians in the field.
2- Novel models of biological control strategies for eye-head and ocular reflexes (funded by CIHR) based on the special nature (topology) of neural circuits in the brainstem and spinal cord. These models change the interpretation of data at both behavioural and neural levels, and suggest new protocols to test the integrity of motor systems in more natural mixed-sensory environments, as in daily life. This is only possible now because our algorithms can handle diverse conditions. More recently, explorations on arm reaching (funded by NSERC) predict that our control strategies used in eye-head coordination are consistent with primate arm or leg trajectories and the topology of the spinal cord. The result is much simpler control than typically used in the robotic literature – i.e. movement without planning.
All of these systems use network topologies similar in their spatial organization and in the use of sensorimotor fusion. This suggests a possible general control theory for all platforms, be they stacked and rotatory, or segmental limbs. So the long-term goal is:
TO FORMALIZE A BIOMIMETIC CONTROL STRATEGY FOR MOVING SYSTEMS THAT WILL ALLOW EXECUTION OF SIMPLE TASKS WITHOUT A-PRIORI TRAJECTORY PLANNING
As short term-objectives, the mentioned characteristics found in biology will be evaluated and formalized for general applications, with:
• A controller structure or topology analoguous to neural connections in the brainstem and spinal cord (symmetry, sites of sensor-motor interactions) to imbed dynamic modes with mode selection criteria (switch, order of mapping matrix) first spatially 1D then 3D.
• Optimal Non-linear gain fields between sensors and their target platforms, and between platforms, which determine the dynamics and curvature of trajectories.
• Learning strategies for controller “tuning” by executive central control (analogs cortex and cerebellum) and allow independent adjustments of movement speed and trajectory, without the need to re-compute a trajectory plan.
The main assumptions are: task error sent directly to all participating platforms (no separate goals); trajectories for each segment and the end-point evolve as a property of the dynamics of the network, rather than pre-imposed by computation as in classical robotics. If this can be generalized and easily tuned for different mechanical systems, it would have impact in several areas: a 'natural feel' for interfaces that attempt to drive paralyzed limbs, a faster learning curve for the use of artificial limbs if the input from alternate muscles can preserve their natural activation patterns, and a more natural interface system for remote device operation. The goal is to allow the user to keep his/her habitual activation patterns, rather than develop new ones that may be in conflict with their neural capabilities. Finally, this should lead to smart robotic systems that adjust to contexts autonomously, with low computational demand.
我们的长期目标是从生物运动中学习,并为人工系统(机器人、假肢)和辅助人类控制(FES、神经接口)设计高效且新颖的控制策略。迄今为止,我们主要关注并行子目标中的两个流:
1-适用于非线性参数场、切换混合策略和强加拓扑的困难背景下的生物运动系统的新分析工具。过去由 NSERC 资助,我们开发了软件创新,现在由 NSERC/I2I 支持:创建切换系统中响应模式的自动分类和识别工具,以估计每种模式的动态(尽管有切换特性)。它们的目标是分发给该领域的神经科学家、神经耳科医生和临床医生。
2-基于脑干和脊髓神经回路的特殊性质(拓扑)的眼头和眼反射生物控制策略的新模型(由CIHR资助)。这些模型改变了行为和神经水平上的数据解释,并提出了新的协议来测试在更自然的混合感官环境(如日常生活中)中运动系统的完整性。这现在才成为可能,因为我们的算法可以处理不同的条件。最近,对手臂伸展的探索(由 NSERC 资助)预测,我们在眼头协调中使用的控制策略与灵长类动物手臂或腿部的轨迹以及脊髓的拓扑结构一致。结果是比机器人文献中通常使用的控制简单得多——即无需计划的移动。
所有这些系统都使用在空间组织和感觉运动融合方面相似的网络拓扑。这提出了一种适用于所有平台的可能的通用控制理论,无论它们是堆叠式、旋转式还是分段式四肢。所以长期目标是:
为移动系统制定仿生控制策略,无需先验轨迹规划即可执行简单任务
作为短期目标,将对生物学中发现的上述特征进行评估并形式化以用于一般应用,其中:
• 类似于脑干和脊髓中的神经连接(对称性、传感器-运动相互作用的位点)的控制器结构或拓扑,首先在空间上1D,然后在3D 中嵌入具有模式选择标准(开关、映射矩阵的顺序)的动态模式。
• 传感器与其目标平台之间以及平台之间的最佳非线性增益场,决定轨迹的动态和曲率。
• 通过执行中央控制(类似皮层和小脑)学习控制器“调整”策略,并允许独立调整运动速度和轨迹,无需重新计算轨迹计划。
主要假设是:任务错误直接发送到所有参与平台(没有单独的目标);每个部分和终点的轨迹作为网络动力学的属性而演变,而不是像经典机器人技术那样通过计算预先强加。如果这可以针对不同的机械系统进行推广和轻松调整,它将在几个领域产生影响:尝试驱动瘫痪肢体的界面的“自然感觉”,如果来自替代肌肉的输入可以保留其自然激活模式,则使用假肢的学习曲线会更快,以及用于远程设备操作的更自然的界面系统。目标是让用户保持他/她的习惯激活模式,而不是开发可能与其神经功能相冲突的新激活模式。最后,这应该会导致智能机器人系统能够自主适应环境,且计算需求较低。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Galiana, Henrietta其他文献
Galiana, Henrietta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Galiana, Henrietta', 18)}}的其他基金
Towards biomimetic control of robotic or paralyzed limbs
实现机器人或瘫痪肢体的仿生控制
- 批准号:
RGPIN-2014-05886 - 财政年份:2018
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Towards biomimetic control of robotic or paralyzed limbs
实现机器人或瘫痪肢体的仿生控制
- 批准号:
RGPIN-2014-05886 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Towards biomimetic control of robotic or paralyzed limbs
实现机器人或瘫痪肢体的仿生控制
- 批准号:
RGPIN-2014-05886 - 财政年份:2015
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Towards biomimetic control of robotic or paralyzed limbs
实现机器人或瘫痪肢体的仿生控制
- 批准号:
RGPIN-2014-05886 - 财政年份:2014
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Signal processing, identification and control in switched non-linear systems
开关非线性系统中的信号处理、识别和控制
- 批准号:
6662-2007 - 财政年份:2012
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Smart & automatic analysis of ocular nystagmus for tracking patients and astronaut health.
聪明的
- 批准号:
437383-2012 - 财政年份:2012
- 资助金额:
$ 2.7万 - 项目类别:
Idea to Innovation
Signal processing, identification and control in switched non-linear systems
开关非线性系统中的信号处理、识别和控制
- 批准号:
6662-2007 - 财政年份:2011
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Signal processing, identification and control in switched non-linear systems
开关非线性系统中的信号处理、识别和控制
- 批准号:
6662-2007 - 财政年份:2010
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Signal processing, identification and control in switched non-linear systems
开关非线性系统中的信号处理、识别和控制
- 批准号:
6662-2007 - 财政年份:2009
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Signal processing, identification and control in switched non-linear systems
开关非线性系统中的信号处理、识别和控制
- 批准号:
6662-2007 - 财政年份:2008
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
仿生膜构建破骨细胞融合纳米诱饵用于骨质疏松治疗的研究
- 批准号:82372098
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于仿生矿化法构建氢离子捕获的炎症调节性水凝胶微球在卒中治疗中的研究
- 批准号:82372120
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Development of an EMG-controlled BCI for biomimetic control of hand movement in humans
开发 EMG 控制的 BCI,用于仿生控制人类手部运动
- 批准号:
10651404 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Biomimetic approaches for enthesis tissue engineering
附着点组织工程的仿生方法
- 批准号:
10586825 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Biomimetic dynamic mechanobiology: developing control strategies for self-organizing microengineered tissues
仿生动态力学生物学:开发自组织微工程组织的控制策略
- 批准号:
RGPIN-2022-05165 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Biomimetic and Injectable Highly Porous Nanofiber Microsphere-based Platform for Alveolar Bone Regeneration
用于牙槽骨再生的仿生和可注射高孔隙纳米纤维微球平台
- 批准号:
10641000 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Applying Natural Design Principles For Biomimetic Robotic Control
将自然设计原理应用于仿生机器人控制
- 批准号:
2849790 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Studentship
Biomimetic control of ovarian follicle development: combining multi-scale soft biomaterials with biochemical interactions
卵泡发育的仿生控制:多尺度软生物材料与生化相互作用相结合
- 批准号:
2596382 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Studentship
Data Management for Molecule Simulation : A Throughput-Oriented Approach
分子模拟的数据管理:一种面向吞吐量的方法
- 批准号:
10299289 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Data Management for Molecule Simulation : A Throughput-Oriented Approach
分子模拟的数据管理:一种面向吞吐量的方法
- 批准号:
10705678 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Robust biomimetic models of human legs to solve high-dimensional real-time control problems
鲁棒的人体腿部仿生模型解决高维实时控制问题
- 批准号:
10208921 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别: