Development of an EMG-controlled BCI for biomimetic control of hand movement in humans
开发 EMG 控制的 BCI,用于仿生控制人类手部运动
基本信息
- 批准号:10651404
- 负责人:
- 金额:$ 67.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressBiomimeticsDataDevelopmentDigit structureFingersHandHumanIndividualIntuitionJointsKineticsLegLifeLimb structureMeasuresMethodsModelingMotionMotorMotor CortexMotor outputMovementMuscleMusculoskeletalNerveOutputParalysedParticipantPatientsPatternPerformancePersonsPostureRoboticsSignal TransductionSpinal cord injurySystemTestingTimeUser-Computer InterfaceVisualizationarmbrain computer interfacebrain surgerydesignelectric impedancefunctional electrical stimulationgrasphigh dimensionalityimprovedkinematicslimb lossmotor controlneuromuscular systemrobot controlvirtual reality
项目摘要
Abstract
When asked, most persons with high-level spinal cord injury (SCI) would elect brain surgery to improve their
hand control, yet even the state-of-the-art intracortical brain computer interfaces (iBCI) have only limited control
of finger motion and no direct control of applied forces whatsoever. The exclusive use of kinematics in iBCI
control is despite the rich representation of kinetic information in primary motor cortex (M1). We propose to
address these fundamental limitations by mimicking the mammalian neuromuscular system, which controls both
digit motion and the forces they exert through the modulation of muscle activity. We will develop an iBCI that
predicts intended muscle activity (EMG) from M1 recordings in humans, then use these EMG signals to control
joint kinematics, their stiffness, and grasp forces, through a forward musculoskeletal model of the hand. We
hypothesize that this EMG-based iBCI will be an intuitive means for humans with high-level SCI to achieve more
generalizable control of their hand movements than with existing kinematic iBCIs.
Decoders for use by paralyzed humans are typically built by recording spiking activity from M1 as the user
attempts to imitate the observed motion of a cursor or a robotic arm. The decoder is computed by correlating
measured M1 activity with the observed kinematics. Though similar in concept, our approach to decoder
development is more challenging, as the high-dimensional motor output signals it requires – the EMGs – cannot
be directly visualized or imitated. To circumvent this problem, we will record EMGs (as well as hand posture and
contact forces) as able-bodied people perform a broad range of motor actions. We will also record M1 spiking
activity as paralyzed individuals observe and attempt to imitate the same actions. The able-bodied EMG data
will provide the output signals for decoder calculation, analogous to the use of observed the trajectory in
kinematic decoders. This real-time, EMG-based iBCI will allow participants to control a hand, using it to apply
forces to grasped objects in a way that mimics natural motor control. Initial development will be done in virtual
reality (VR). Subsequently, participants will use the same biomimetic iBCI to control a robotic hand in tasks
designed to replicate activities of daily life. We will compare the users' performance with this biomimetic iBCI to
that of a state-of-the-art kinematic iBCI. When successful, these methods will have application to the control of
robotic limbs for patients with limb loss, and as a means to restore movement of the user's own limbs through
Functional Electrical Stimulation. They could also be applied to the legs, where control of interaction forces and
limb impedance through muscle cocontraction is also critical.
摘要
当被问及时,大多数患有高位脊髓损伤(SCI)的人会选择脑外科手术来改善他们的生活。
然而,即使是最先进的皮质内脑机接口(iBCI)也只能进行有限的控制
手指的运动和没有直接控制施加的力量。在iBCI中独家使用运动学
尽管在初级运动皮层(M1)中有丰富的运动信息,但控制仍然存在。我们建议
通过模仿哺乳动物的神经肌肉系统来解决这些基本的限制,
手指运动和它们通过肌肉活动的调节施加的力。我们将开发一种iBCI,
从人类的M1记录中预测预期的肌肉活动(EMG),然后使用这些EMG信号来控制
关节运动学,他们的刚度,和把握力,通过一个向前的肌肉骨骼模型的手。我们
假设这种基于EMG的iBCI将是一种直观的手段,用于高级别SCI患者,
与现有的运动学iBCI相比,他们的手部运动的可概括控制。
供瘫痪的人使用的解码器通常通过记录来自M1的尖峰活动来构建,
试图模仿观察到的光标或机器人手臂的运动。解码器通过相关计算
测量的M1活动与观察到的运动学。虽然在概念上相似,但我们的解码器方法
发展更具挑战性,因为它需要的高维运动输出信号-EMG-不能
直接模仿或模仿。为了避免这个问题,我们将记录EMG(以及手的姿势和
接触力),因为身体健全的人执行广泛的运动动作。我们还将记录M1峰值
瘫痪的人观察并试图模仿同样的动作。健全人的肌电图数据
将为解码器计算提供输出信号,类似于使用观察到的轨迹,
运动学解码器这种基于EMG的实时iBCI将允许参与者控制一只手,用它来应用
以一种模仿自然运动控制的方式对抓取的物体施加力。最初的开发将在虚拟
现实(VR)。随后,参与者将使用相同的仿生iBCI来控制机器人手的任务
旨在复制日常生活活动。我们将比较用户的性能与这种仿生iBCI,
最先进的运动iBCI如果成功,这些方法将用于控制
为肢体缺失患者提供的机器人肢体,并作为通过以下方式恢复用户自身肢体运动的手段:
功能性电刺激。它们也可以应用于腿,其中控制相互作用力和
通过肌肉共收缩的肢体阻抗也是关键的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer L. Collinger其他文献
Use of Cortical Surface Stimulation towards Reliable Sensation in Human
- DOI:
10.1016/j.apmr.2015.10.071 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:
- 作者:
Shivayogi V. Hiremath;Elizabeth C. Tyler-Kabara;Jesse Wheeler;Daniel W. Moran;Robert A. Gaunt;Jennifer L. Collinger;Stephen Thomas Foldes;Douglas John Weber;Weidong Chen;Michael Boninger;Wei Wang - 通讯作者:
Wei Wang
Evoking stable and precise tactile sensations via multi-electrode intracortical microstimulation of the somatosensory cortex
通过体感皮层的多电极皮层内微刺激唤起稳定而精确的触觉感受
- DOI:
10.1038/s41551-024-01299-z - 发表时间:
2024-12-06 - 期刊:
- 影响因子:26.600
- 作者:
Charles M. Greenspon;Giacomo Valle;Natalya D. Shelchkova;Taylor G. Hobbs;Ceci Verbaarschot;Thierri Callier;Ev I. Berger-Wolf;Elizaveta V. Okorokova;Brianna C. Hutchison;Efe Dogruoz;Anton R. Sobinov;Patrick M. Jordan;Jeffrey M. Weiss;Emily E. Fitzgerald;Dillan Prasad;Ashley Van Driesche;Qinpu He;Fang Liu;Robert F. Kirsch;Jonathan P. Miller;Ray C. Lee;David Satzer;Jorge Gonzalez-Martinez;Peter C. Warnke;Abidemi B. Ajiboye;Emily L. Graczyk;Michael L. Boninger;Jennifer L. Collinger;John E. Downey;Lee E. Miller;Nicholas G. Hatsopoulos;Robert A. Gaunt;Sliman J. Bensmaia - 通讯作者:
Sliman J. Bensmaia
Jennifer L. Collinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer L. Collinger', 18)}}的其他基金
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10838152 - 财政年份:2023
- 资助金额:
$ 67.8万 - 项目类别:
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10548865 - 财政年份:2022
- 资助金额:
$ 67.8万 - 项目类别:
The interplay between kinematic and force representations in motor and somatosensory cortices during reaching, grasping, and object transport
伸手、抓握和物体运输过程中运动和体感皮层运动学和力表征之间的相互作用
- 批准号:
10546486 - 财政年份:2022
- 资助金额:
$ 67.8万 - 项目类别:
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
- 批准号:
10363903 - 财政年份:2022
- 资助金额:
$ 67.8万 - 项目类别:
Influence of Task Complexity and Sensory Feedback on Cortical Control of Grasp Force
任务复杂性和感觉反馈对皮质控制握力的影响
- 批准号:
10705074 - 财政年份:2021
- 资助金额:
$ 67.8万 - 项目类别:
Influence of task complexity and sensory feedback on cortical control of grasp force
任务复杂性和感觉反馈对皮质控制抓握力的影响
- 批准号:
10289762 - 财政年份:2021
- 资助金额:
$ 67.8万 - 项目类别:
Influence of task complexity and sensory feedback on cortical control of grasp force
任务复杂性和感觉反馈对皮质控制抓握力的影响
- 批准号:
10480085 - 财政年份:2021
- 资助金额:
$ 67.8万 - 项目类别:
Eighth International Brain Computer Interface Meeting
第八届国际脑机接口会议
- 批准号:
9913702 - 财政年份:2020
- 资助金额:
$ 67.8万 - 项目类别:
Context-dependent processing in sensorimotor cortex
感觉运动皮层的上下文相关处理
- 批准号:
9791028 - 财政年份:2018
- 资助金额:
$ 67.8万 - 项目类别:
Investigation of Cortical Changes Following Spinal Cord Injury
脊髓损伤后皮质变化的调查
- 批准号:
8200932 - 财政年份:2012
- 资助金额:
$ 67.8万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Research Grant