Influence of natural fractures and stress path on brittle fracture propagation and hydraulic fracturing for improved rock mass preconditioning and enhanced permeability

天然裂缝和应力路径对脆性裂缝扩展和水力压裂的影响,以改善岩体预处理和增强渗透性

基本信息

  • 批准号:
    RGPIN-2014-06121
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

With ever-growing populations and rising living standards, global demand for mineral and energy resources are reaching unprecedented levels. This compels resource rich countries like Canada to shift towards developing deeper mines and unconventional gas reservoirs as near surface and conventional reserves are depleted. To do so, hydraulic fracturing is being proposed as a means to address key technical challenges being faced. Hydraulic fracturing is currently being used by mass mining operations to increase fragmentation and improve the mineability of stronger rocks being encountered at greater depths. It is also being explored as a means to mitigate high stresses and rock burst hazards in deep mines through modification of the stress field. Furthermore, shale gas producers are using hydraulic fracturing to enhance permeability and optimize well productivity. This new era of engineering challenges, will require a transition in the state-of-practice in hydraulic fracturing towards a more detailed accounting of geological complexity and its impact on safety, economics, and resource utilization in deep mining and unconventional gas extraction. Challenges currently persist in the frequent use of hydraulic fracture design tools that adopt simplifying assumptions regarding geology and the rock behaviour, namely treating it as a linear elastic intact material. In contrast, rock conditions are much more complex. Present are numerous natural fractures, including bedding planes, joints and faults. Recent progress has been made with my students applying innovative numerical modelling techniques that account for both shear along existing natural fractures and tensile fracture of intact rock in response to hydraulic fracturing. Building on the successes of my long-term research vision, planned research will continue to explore the integration of rock mass characterization, geotechnical monitoring and advanced numerical modelling to better understand the complex responses involved. The objectives will focus on the interactions that develop between a hydraulic fracture and the natural fractures present in the rock mass as a function of the superimposed stress conditions. The proposed research will explore linking characterization and “ground-truthing” of natural fracture systems with advanced numerical modelling tools and performance monitoring. This will be used to verify predictive models assessing the effectiveness of the hydraulic fracturing treatments performed. The scientific approach will include specially designed laboratory experiments that will be combined with field-based observations and state-of-the-art computer simulations. This will lead to both improved experimental design and more robust interpretation of results. Access to unique data sets, facilitated through my participation in a number of international field-scale experiments, will add to the novelty and expected significance of the research. The results are expected to significantly contribute to Canada’s body of knowledge on underground mass mining, unconventional shale gas extraction, and our internationally recognized expertise in deep mining. HQP will be provided with unique and practical learning experiences and skill sets that are in high demand in industry and are of strategic importance for Canada’s future natural resource development needs. Contributions will include both the advancement of the next generation of state-of-the-art engineering tools together with improved state-of-practice guidelines for geo-hazard assessment, performance assurance, and risk minimization in decision making.
随着人口的不断增长和生活水平的提高,全球对矿产和能源的需求达到了前所未有的水平。这迫使加拿大等资源丰富的国家转向开发更深的矿井和非常规天然气储层,因为近地表和常规储量已经耗尽。为此,水力压裂被提议作为解决所面临的关键技术挑战的一种手段。水力压裂法目前正用于大规模采矿作业,以增加破碎度,并改善在更深处遇到的更坚固岩石的采矿能力。目前还在探讨通过改变应力场来减轻深井中的高应力和岩爆危险。此外,页岩气生产商正在使用水力压裂来提高渗透率并优化油井生产率。 这一工程挑战的新时代将要求水力压裂的实践状态向更详细地核算地质复杂性及其对安全性、经济性和资源利用的影响的转变。目前的挑战是经常使用水力压裂设计工具,这些工具采用关于地质和岩石行为的简化假设,即将其视为线性弹性完整材料。相比之下,岩石条件要复杂得多。存在许多天然裂缝,包括层面、节理和断层。最近的进展已经取得了与我的学生应用创新的数值模拟技术,占剪切沿着现有的天然裂缝和拉伸断裂的完整岩石在水力压裂。 在我长期研究愿景的成功基础上,计划的研究将继续探索岩体表征,岩土监测和先进数值建模的整合,以更好地了解所涉及的复杂反应。目标将集中在水力裂缝和岩体中存在的天然裂缝之间的相互作用,作为叠加应力条件的函数。拟议的研究将探索将天然裂缝系统的表征和“地面实况”与先进的数值建模工具和性能监测联系起来。这将用于验证评估所执行的水力压裂处理的有效性的预测模型。科学方法将包括专门设计的实验室实验,这些实验将与实地观察和最先进的计算机模拟相结合。这将导致改进的实验设计和更可靠的结果解释。 通过参与一些国际实地规模的实验,获得独特的数据集,将增加研究的新奇和预期意义。预计这些结果将大大有助于加拿大在地下大规模开采、非常规页岩气开采方面的知识体系,以及我们在深部开采方面的国际公认的专业知识。HQP将获得独特且实用的学习经验和技能,这些经验和技能在行业中需求很高,并且对加拿大未来的自然资源开发需求具有战略重要性。贡献将包括下一代最先进的工程工具的进步,以及改进地质灾害评估、性能保证和决策风险最小化的实践指南。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eberhardt, Erik其他文献

On the seismic response of deep-seated rock slope instabilities - Insights from numerical modeling
  • DOI:
    10.1016/j.enggeo.2015.04.003
  • 发表时间:
    2015-07-02
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Gischig, Valentin S.;Eberhardt, Erik;Hungr, Oldrich
  • 通讯作者:
    Hungr, Oldrich
The Hoek-Brown Failure Criterion
Numerical Investigation of Seismically Induced Rock Mass Fatigue as a Mechanism Contributing to the Progressive Failure of Deep-Seated Landslides
  • DOI:
    10.1007/s00603-015-0821-z
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Gischig, Valentin;Preisig, Giona;Eberhardt, Erik
  • 通讯作者:
    Eberhardt, Erik
Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data
  • DOI:
    10.1139/cgj-2014-0028
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Dick, Graham J.;Eberhardt, Erik;Rose, Nick D.
  • 通讯作者:
    Rose, Nick D.

Eberhardt, Erik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eberhardt, Erik', 18)}}的其他基金

Improved Procedures for Analyzing the Deformation and Failure Responses of Brittle Rock in High Stress Environments
高应力环境下​​脆性岩石变形和破坏响应分析的改进程序
  • 批准号:
    RGPIN-2019-04589
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Improved Procedures for Analyzing the Deformation and Failure Responses of Brittle Rock in High Stress Environments
高应力环境下​​脆性岩石变形和破坏响应分析的改进程序
  • 批准号:
    RGPIN-2019-04589
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Improved Procedures for Analyzing the Deformation and Failure Responses of Brittle Rock in High Stress Environments
高应力环境下​​脆性岩石变形和破坏响应分析的改进程序
  • 批准号:
    RGPIN-2019-04589
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Fiber Optic Distributed Acoustic Sensing for Stress Measurement and Mitigation of High Stress Hazards at Depth
用于深度压力测量和减轻高应力危险的光纤分布式声学传感
  • 批准号:
    RTI-2021-00326
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Tools and Instruments
Investigation of induced seismicity mechanisms and magnitude distribution under different stress regimes,fault characteristics,and operational factors
研究不同应力状态、断层特征和操作因素下的诱发地震活动机制和震级分布
  • 批准号:
    514552-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Collaborative Research and Development Grants
Improved Procedures for Analyzing the Deformation and Failure Responses of Brittle Rock in High Stress Environments
高应力环境下​​脆性岩石变形和破坏响应分析的改进程序
  • 批准号:
    RGPIN-2019-04589
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrasonic and Acoustic Emission Imaging of Brittle Fracturing Processes to Investigate the Progressive Failure of Rock
脆性断裂过程的超声波和声发射成像研究岩石的渐进破坏
  • 批准号:
    RTI-2019-00065
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Tools and Instruments
Investigation of induced seismicity mechanisms and magnitude distribution under different stress regimes,fault characteristics,and operational factors
研究不同应力状态、断层特征和操作因素下的诱发地震活动机制和震级分布
  • 批准号:
    514552-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Collaborative Research and Development Grants
Influence of natural fractures and stress path on brittle fracture propagation and hydraulic fracturing for improved rock mass preconditioning and enhanced permeability
天然裂缝和应力路径对脆性裂缝扩展和水力压裂的影响,以改善岩体预处理和增强渗透性
  • 批准号:
    RGPIN-2014-06121
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Development and validation of a 3-D bonded block modelling approach to assist in the assessment of rock mass bulking and support design for highly stressed mine pillars
开发和验证 3D 粘结块建模方法,以协助评估岩体膨胀和高应力矿柱的支撑设计
  • 批准号:
    479085-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

Natural超对称中的希格斯物理与暗物质研究
  • 批准号:
    11775039
  • 批准年份:
    2017
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
Natural超对称在LHC上的现象学研究
  • 批准号:
    11405015
  • 批准年份:
    2014
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
双硅化合物反应及天然产物合成应用研究
  • 批准号:
    21172150
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
受体编辑在天然自身反应性B细胞发育耐受中的作用和机制研究
  • 批准号:
    30901336
  • 批准年份:
    2009
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
海洋天然产物Amphidinolide G和H全合成研究
  • 批准号:
    20772148
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
抗肾小球基底膜抗体的免疫学特性在疾病发生和发展中的作用
  • 批准号:
    30700752
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10754152
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Fluoridated scaffolds for the treatment of critical-size bone defects
用于治疗临界尺寸骨缺损的氟化支架
  • 批准号:
    10633345
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Regenerative engineering for complex extremity trauma
复杂肢体创伤的再生工程
  • 批准号:
    10584227
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Unbiased mapping of skeletal stem cell function at single cell resolution in homeostasis and injury.
在稳态和损伤中以单细胞分辨率对骨骼干细胞功能进行无偏映射。
  • 批准号:
    10661359
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Derivation of a Clinical Prediction Rule for Pediatric Abusive Fractures
儿童虐待性骨折临床预测规则的推导
  • 批准号:
    10331949
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
The Effects of Medicare Advantage on Healthcare Use and Patient Outcomes
医疗保险优势对医疗保健使用和患者结果的影响
  • 批准号:
    10366609
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Effects of Advanced Glycation Endproducts on Type 2 Diabetic and Fragility Fractures
晚期糖基化终产物对 2 型糖尿病和脆性骨折的影响
  • 批准号:
    10672317
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): A stitch in time saves nine!
BCCMA:采取行动并抵抗对骨骼不利的条件的基础研究(骨折遏制):及时缝一针可以节省九针!
  • 批准号:
    10483595
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Advances in Musculoskeletal & Neuronal Interactions
肌肉骨骼的进展
  • 批准号:
    10318837
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
Dynamics and Regulations of Bone Stem Cells in Vivo
体内骨干细胞的动力学和调控
  • 批准号:
    10477641
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了