Localizations of higher categories with applications
具有应用程序的更高类别的本地化
基本信息
- 批准号:RGPIN-2015-04095
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Manifolds are smooth objects like an inner tube or the surface of a ball, although they don't need to be 2-dimensional, and have been studied extensively in mathematics since the 19th century. The smoothness of a manifold is made precise by saying that locally the object looks just like the plane of like Euclidean n-space. In 1956 a generalization of manifolds called orbifolds was introduced. Orbifolds may have some sharp points. An example of an orbifold would be an ice cream cone which is obtained from a circular sheet by making a 2-fold or 3-fold covering and which has a sharp cone point at the place where the center of the circle was. We used the 2- or 3-fold symmetry of the circular area to make this object. In general, an orbifold can locally be described as a smooth object with a finite amount of symmetry which gives rise to some sharp features which we call singularities. The collection of all these local descriptions together with some information on how they fit together gives an atlas for the orbifold.
Moerdijk and I introduced a different way of describing orbifolds in 1995 and the corresponding notion of map between orbifolds (and of maps between these maps) has allowed us to introduce homotopy invariants for orbifolds (a characteristic of their shape rather than their geometry). They have proven very useful in topological quantum field theory (TQFT), a theory that describes the properties of a quantum field that only depend on its shape, not on its geometry.
In this research I want to give yet another representation of orbifolds which will clarify the deep connection between orbifolds and TQFTs and will enable us to translate results about orbifolds into results about TQFTs. The key insight for this is to put further structure on the maps between orbifolds and on the correspondences between atlas charts. This can be done in several ways, all based on existing constructions in (weak) higher category theory.
As a further application of these new representations I plan to obtain new homotopy invariants for orbifolds; we also hope to further generalize the notion of orbifold so that we may be able to use the same techniques to study other situation with a concept of local symmetry.
My second research direction is to study and develop a new model for weak higher categories. Higher dimensional category theory is useful in studying situations where we have structures and relationships between structures and then again relationships between those relationships, as is the case for orbifolds. There are a couple of models for weak higher categories, but they are very technical to work with. Our new model is made in such a way that it will be easier to inductively define higher dimensional analogues of constructions that we know and understand in low dimensions. Our model differs from others in that we introduce the weakness in a non-standard way. One of the areas where we hope to apply this is in the study of the duals occurring in TQFTs.
流形是光滑的物体,就像内管或球的表面一样,尽管它们不需要是二维的,自19世纪以来,流形就在数学中得到了广泛的研究。流形的平滑性是精确的通过说局部物体看起来就像欧几里得n空间的平面。1956年引入了流形的推广,称为轨道。轨道可能有一些尖锐的点。圆形的一个例子是冰淇淋甜筒,它是由一张圆形的纸做成的,用2层或3层的盖子盖住,在圆心的地方有一个尖锐的锥形点。我们使用圆形区域的2或3倍对称性来制作这个物体。一般来说,一个轨道可以局部地描述为一个光滑的物体,具有有限的对称性,从而产生一些我们称之为奇点的尖锐特征。所有这些局部描述的集合,加上它们如何组合在一起的一些信息,构成了一个轨道的地图集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pronk, Dorothea其他文献
Pronk, Dorothea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pronk, Dorothea', 18)}}的其他基金
Higher Categorical Structures with Applications to Orbifolds and Computational Semantics
更高的分类结构及其在 Orbifolds 和计算语义中的应用
- 批准号:
RGPIN-2021-03919 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Higher Categorical Structures with Applications to Orbifolds and Computational Semantics
更高的分类结构及其在 Orbifolds 和计算语义中的应用
- 批准号:
RGPIN-2021-03919 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Localizations of higher categories with applications
具有应用程序的更高类别的本地化
- 批准号:
RGPIN-2015-04095 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Localizations of higher categories with applications
具有应用程序的更高类别的本地化
- 批准号:
RGPIN-2015-04095 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Localizations of higher categories with applications
具有应用程序的更高类别的本地化
- 批准号:
RGPIN-2015-04095 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Localizations of higher categories with applications
具有应用程序的更高类别的本地化
- 批准号:
RGPIN-2015-04095 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory using higher dimensional categories
使用高维类别的同伦理论
- 批准号:
229813-2008 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory using higher dimensional categories
使用高维类别的同伦理论
- 批准号:
229813-2008 - 财政年份:2011
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory using higher dimensional categories
使用高维类别的同伦理论
- 批准号:
229813-2008 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory using higher dimensional categories
使用高维类别的同伦理论
- 批准号:
229813-2008 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Higher Teichmüller理论中若干控制型问题的研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
高桡度(Higher-Twist)算符和量子色动力学因子化
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Braided tensor categories, higher Picard groups, and classification of topological phases of matter
辫状张量类别、高皮卡德群以及物质拓扑相的分类
- 批准号:
2302267 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
The 3E Study: Economic and Educational Contributions to Emerging Adult Cardiometabolic Health
3E 研究:经济和教育对新兴成人心脏代谢健康的贡献
- 批准号:
10833954 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Post-Baccalaureate Research and Education Program (PREP) for Oklahoma
俄克拉荷马州学士后研究与教育计划 (PREP)
- 批准号:
10556953 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Quantum Symmetries: Subfactors, Topological Phases, and Higher Categories
量子对称性:子因子、拓扑相和更高类别
- 批准号:
2154389 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Transfer RNA sequencing and application to cancer research and clinics
将 RNA 测序和应用转移到癌症研究和临床
- 批准号:
10705187 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Neurobehavioral Mechanisms of Higher-Order and Conceptual Fear and Avoidance Generalization in Anxiety Psychopathology
焦虑精神病理学中高阶和概念恐惧和回避泛化的神经行为机制
- 批准号:
10389973 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Validation of Early Prognostic Data for Recovery Outcomes after Stroke for Future, Higher Yield Trials (VERIFY)
验证中风后恢复结果的早期预后数据,以进行未来更高产量的试验(VERIFY)
- 批准号:
10183797 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Segmental amplification: the collateral effects of co-amplifying genes near a gene under selection for higher dosage
分段扩增:在选择更高剂量的情况下,在基因附近共扩增基因的附带效应
- 批准号:
10463583 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Validation of Early Prognostic Data for Recovery Outcomes after Stroke for Future, Higher Yield Trials (VERIFY)
验证中风后恢复结果的早期预后数据,以进行未来更高产量的试验(VERIFY)
- 批准号:
10474279 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Segmental amplification: the collateral effects of co-amplifying genes near a gene under selection for higher dosage
分段扩增:在选择更高剂量的情况下,在基因附近共扩增基因的附带效应
- 批准号:
10313853 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别: