Higher Categorical Structures with Applications to Orbifolds and Computational Semantics
更高的分类结构及其在 Orbifolds 和计算语义中的应用
基本信息
- 批准号:RGPIN-2021-03919
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program studies the algebra of transformations. Here,`transformation' may stand for a procedure in a computer program or a function in calculus or a symmetry of an object, such as a rotation or reflection. Transformations are often only partially defined; for instance, part of an object may have rotational symmetry, but this symmetry may not be applicable to the whole object. Another example is that of the square root function. If one wants a real number as outcome, then one should not apply it to negative numbers. The current program studies two (related) aspects: the construction and study of models for the algebra of objects with partial/local symmetry and the construction and study of models of the effects of small changes in the input and/or output parameters of a transformation. Some of these models allow one to describe and compute certain characteristics of objects with local symmetry that have proven useful in mathematical physics for instance. One such characteristic is obtained by considering all distinct paths one can construct on the object, up to deformation, where one is allowed to take jumps using the symmetry of the object (such as a reflection or a rotation) as part of the path. My collaborators and I continue to develop and describe new features of these objects in order to enable new applications to areas such as robotics. With my students I am developing new models that take particular features such as smoothness into account. When describing the effect of small changes in an input parameter on the outcome of a computer program, one normally uses differential calculus. This is important in optimization for complex models. The derivative measures how a small change in a given parameter will affect the output. In the literature, there is an algebraic model to describe the role of the derivative in programming semantics. However, in practice one often wants to use something called "reverse differentiation" instead of ordinary forward differentiation. This is for instance the case in back-propagation for neural network training. Here the goal is for each small change in the output to trace back the contribution that each small change in the input variables made. It turns out that this can be done more efficiently and more accurately using the reverse derivative than by calculating the usual forward derivative. I have developed an algebraic model that can be used to describe and study the semantics of computer programs involving backward derivatives. This model also shows how the backward derivative and the forward derivative are related. The backward derivative is more powerful and my works shows exactly what one needs to add to a forward derivative to obtain a backward one. In the current program, I want to combine this formalism with the algebra for partially defined procedures and symmetries as well as the algebra for parallel computation and combine it with the axiomatization of the state of the program.
我的研究项目是研究变换的代数。在这里,“变换”可以代表计算机程序中的一个过程或微积分中的一个函数或物体的对称性,如旋转或反射。变换通常只是部分定义;例如,对象的一部分可能具有旋转对称性,但这种对称性可能不适用于整个对象。另一个例子是平方根函数。如果一个人想要一个真实的数作为结果,那么就不应该将其应用于负数。目前的计划研究两个(相关)方面:部分/局部对称对象的代数模型的构建和研究,以及变换的输入和/或输出参数的微小变化的影响模型的构建和研究。其中一些模型允许人们描述和计算具有局部对称性的物体的某些特性,这些特性在数学物理学中已经证明是有用的。一个这样的特性是通过考虑可以在物体上构造的所有不同路径来获得的,直到变形,利用物体的对称性进行跳跃(例如反射或旋转)作为路径的一部分。我和我的合作者继续开发和描述这些对象的新功能,以便在机器人等领域实现新的应用。我和我的学生一起开发新的模型,考虑到特定的功能,如平滑度。当描述输入参数的微小变化对计算机程序结果的影响时,通常使用微分。这在复杂模型的优化中很重要。导数测量给定参数的微小变化将如何影响输出。在文献中,有一个代数模型来描述的衍生物在编程语义中的作用。然而,在实践中,人们往往希望使用所谓的“反向微分”,而不是普通的正向微分。例如,这是神经网络训练的反向传播的情况。这里的目标是针对输出中的每个小变化来追溯输入变量中的每个小变化所做的贡献。事实证明,使用反向导数比计算通常的正向导数更有效,更准确。我已经开发了一个代数模型,可用于描述和研究涉及向后导数的计算机程序的语义。该模型还显示了向后导数和向前导数是如何相关的。后向导数更强大,我的作品准确地展示了一个人需要添加到前向导数以获得后向导数。在当前的程序中,我想将这种形式主义与部分定义过程和对称性的代数以及并行计算的代数结合起来,并将其与程序状态的公理化结合起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pronk, Dorothea其他文献
Pronk, Dorothea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pronk, Dorothea', 18)}}的其他基金
Higher Categorical Structures with Applications to Orbifolds and Computational Semantics
更高的分类结构及其在 Orbifolds 和计算语义中的应用
- 批准号:
RGPIN-2021-03919 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Localizations of higher categories with applications
具有应用程序的更高类别的本地化
- 批准号:
RGPIN-2015-04095 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Localizations of higher categories with applications
具有应用程序的更高类别的本地化
- 批准号:
RGPIN-2015-04095 - 财政年份:2018
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Localizations of higher categories with applications
具有应用程序的更高类别的本地化
- 批准号:
RGPIN-2015-04095 - 财政年份:2017
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Localizations of higher categories with applications
具有应用程序的更高类别的本地化
- 批准号:
RGPIN-2015-04095 - 财政年份:2016
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Localizations of higher categories with applications
具有应用程序的更高类别的本地化
- 批准号:
RGPIN-2015-04095 - 财政年份:2015
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory using higher dimensional categories
使用高维类别的同伦理论
- 批准号:
229813-2008 - 财政年份:2012
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory using higher dimensional categories
使用高维类别的同伦理论
- 批准号:
229813-2008 - 财政年份:2011
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory using higher dimensional categories
使用高维类别的同伦理论
- 批准号:
229813-2008 - 财政年份:2010
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory using higher dimensional categories
使用高维类别的同伦理论
- 批准号:
229813-2008 - 财政年份:2009
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Higher Categorical Structures with Applications to Orbifolds and Computational Semantics
更高的分类结构及其在 Orbifolds 和计算语义中的应用
- 批准号:
RGPIN-2021-03919 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152235 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2151946 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152088 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152311 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2151718 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
Homotopical and higher categorical structures
同伦和更高的分类结构
- 批准号:
2617204 - 财政年份:2021
- 资助金额:
$ 1.53万 - 项目类别:
Studentship
Working synthetically in higher categorical structures
在更高的分类结构中综合工作
- 批准号:
DP190102432 - 财政年份:2019
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Projects
HIGHER CATEGORICAL STRUCTURES IN HOMOTOPY THEORY AND HOMOLOGICAL ALGEBRA
同伦理论和同调代数中的更高范畴结构
- 批准号:
DP0558598 - 财政年份:2005
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Projects
Higher algebraic and categorical structures from two-dimensional conformal field theory
二维共形场论的高等代数和分类结构
- 批准号:
522099735 - 财政年份:
- 资助金额:
$ 1.53万 - 项目类别:
WBP Position