Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
基本信息
- 批准号:RGPIN-2015-04776
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Although the origins of positivity and convexity are found in the natural total ordering on the real numbers, these basic structures emerge in several important and distinct ways within contemporary algebraic geometry. For instance, the theory of normal toric varieties over an algebraically closed field builds a robust dictionary between projective varieties and rational convex polytopes. In contrast, when working over a real closed field, the sections of a line bundle, whose evaluation at any real point is positive, form a convex cone that is rarely polyhedral. As a third example, Boij–Söderberg theory characterizes all of the cohomology groups for vector bundles on projective space via convex geometry. The broad aim of this research program is to understand the deep and subtle relations between these various incarnations of positivity and convexity. Because these fundamental problems connect many different areas of mathematics including algebraic geometry, commutative algebra, optimization, combinatorics, and convex geometry, advances will likely impact and influence a large community.
The long-term goals are to discover new frameworks for positivity inside algebraic geometry and to refine our understanding of specific convex cones appearing in algebraic geometry. The research will produce new mathematical results and new open-source software tools. In the short-term, we will concentrate on the following three problems:
(a) Create a comprehensive dictionary between projectivized torus-equivariant vector bundles over a complete toric variety and appropriate collections of convex polytopes.
(b) Given any nonnegative form f of degree 2d on a real projective subvariety, develop effective bounds on the integers e for which there exists a sum of squares g of forms degree e such that the product fg is a sum of squares of forms of degree 2(d+e).
(c) Invent new homological mechanisms for representing coherent sheaves on toric varieties as short complexes of arithmetically-free vector bundles (also known as direct sums of line bundles).
The graduate students, postdoctoral fellows, and undergraduate students who contribute to this research program, will not only obtain valuable technical and scientific skills, but they will also become competent communicators. With their training, they will be well-positioned for a variety of careers in the mathematical sciences.
虽然起源的积极性和凸性是发现在自然全序的真实的数字,这些基本结构出现在几个重要的和独特的方式在当代代数几何。例如,代数闭域上的正规环面簇的理论在射影簇和有理凸多面体之间建立了一个强大的字典。相反,当在一个真实的闭域上工作时,在任何真实的点的求值为正的线丛的截面形成一个凸锥,很少是多面体。作为第三个例子,Boij-Söderberg理论通过凸几何刻画了射影空间上向量丛的所有上同调群。这个研究项目的广泛目标是了解积极性和凸性的这些不同体现之间的深刻和微妙的关系。由于这些基本问题连接了许多不同的数学领域,包括代数几何,交换代数,优化,组合学和凸几何,进步可能会影响和影响一个大的社区。
长期目标是发现代数几何内部的积极性的新框架,并完善我们对代数几何中出现的特定凸锥的理解。这项研究将产生新的数学成果和新的开源软件工具。短期内,我们将集中力量解决以下三个问题:
(a)创建一个全面的字典之间的投影环面等变向量丛在一个完整的环面品种和适当的集合凸多面体。
(b)给定一个真实的射影子簇上的任意2d次非负形式f,给出整数e的有效界,使得存在e次形式的平方和g,使得乘积fg是2次形式的平方和(d+e)。
(c)发明新的同调机制,将复曲面簇上的相干层表示为算术自由向量丛的短复形(也称为线丛的直接和)。
研究生,博士后研究员和本科生谁有助于这个研究计划,不仅将获得宝贵的技术和科学技能,但他们也将成为称职的沟通者。 通过他们的培训,他们将在数学科学的各种职业中处于有利地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Smith, Gregory其他文献
Modelling the global coastal ocean
- DOI:
10.1098/rsta.2008.0210 - 发表时间:
2009-03-13 - 期刊:
- 影响因子:5
- 作者:
Holt, Jason;Harle, James;Smith, Gregory - 通讯作者:
Smith, Gregory
Kramers–Kronig relation in attosecond transient absorption spectroscopy
阿秒瞬态吸收光谱中的克莱默斯-克罗尼格关系
- DOI:
10.1364/optica.474960 - 发表时间:
2023 - 期刊:
- 影响因子:10.4
- 作者:
Leshchenko, Vyacheslav;Hageman, Stephen J.;Cariker, Coleman;Smith, Gregory;Camper, Antoine;Talbert, Bradford K.;Agostini, Pierre;Argenti, Luca;DiMauro, Louis F. - 通讯作者:
DiMauro, Louis F.
Heparin-derived supersulfated disaccharide inhibits allergic airway responses in sheep
- DOI:
10.1016/j.pupt.2013.12.001 - 发表时间:
2014-06-01 - 期刊:
- 影响因子:3.2
- 作者:
Ahmed, Tahir;Smith, Gregory;Abraham, William M. - 通讯作者:
Abraham, William M.
Harmonization of pipeline for preclinical multicenter MRI biomarker discovery in a rat model of post-traumatic epileptogenesis
- DOI:
10.1016/j.eplepsyres.2019.01.001 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:2.2
- 作者:
Immonen, Riikka;Smith, Gregory;Grohn, Olli - 通讯作者:
Grohn, Olli
Innate Immune Response to Influenza Virus at Single-Cell Resolution in Human Epithelial Cells Revealed Paracrine Induction of Interferon Lambda 1
- DOI:
10.1128/jvi.00559-19 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:5.4
- 作者:
Ramos, Irene;Smith, Gregory;Fernandez-Sesma, Ana - 通讯作者:
Fernandez-Sesma, Ana
Smith, Gregory的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Smith, Gregory', 18)}}的其他基金
Combinatorial Algebraic Geometry
组合代数几何
- 批准号:
RGPIN-2020-05724 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Discrete Bonding of Bio-Based Adherends
生物基粘附体的离散粘合
- 批准号:
RGPIN-2015-04783 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Algebraic Geometry
组合代数几何
- 批准号:
RGPIN-2020-05724 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Algebraic Geometry
组合代数几何
- 批准号:
RGPIN-2020-05724 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Discrete Bonding of Bio-Based Adherends
生物基粘附体的离散粘合
- 批准号:
RGPIN-2015-04783 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
- 批准号:
RGPIN-2015-04776 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
- 批准号:
RGPIN-2015-04776 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Development and evaluation of novel pallets
新型托盘的开发与评估
- 批准号:
532007-2018 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Engage Grants Program
Discrete Bonding of Bio-Based Adherends
生物基粘附体的离散粘合
- 批准号:
RGPIN-2015-04783 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Under-utilized Canadian wood species for strand based products
用于线材产品的加拿大木材品种未得到充分利用
- 批准号:
476414-2014 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
- 批准号:
RGPIN-2015-04776 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
- 批准号:
RGPIN-2015-04776 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
- 批准号:
RGPIN-2015-04776 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
AF: Large: Collaborative Research: Algebraic Proof Systems, Convexity, and Algorithms
AF:大型:协作研究:代数证明系统、凸性和算法
- 批准号:
1565235 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Continuing Grant
AF: Large: Collaborative Research: Algebraic Proof Systems, Convexity, and Algorithms
AF:大型:协作研究:代数证明系统、凸性和算法
- 批准号:
1565264 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Continuing Grant
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
- 批准号:
RGPIN-2015-04776 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Convexity in real algebraic geometry
实代数几何中的凸性
- 批准号:
241225335 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Research Grants
Dilation theory and convexity in free semi-algebraic geometry
自由半代数几何中的膨胀理论和凸性
- 批准号:
1101137 - 财政年份:2011
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Algebraic Algorithms in Discrete Optimization and Tools for Computational Convexity
离散优化中的代数算法和计算凸性工具
- 批准号:
0608785 - 财政年份:2006
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Real algebraic geometry, convexity and topology
实代数几何、凸性和拓扑
- 批准号:
502861109 - 财政年份:
- 资助金额:
$ 1.24万 - 项目类别:
Research Grants