Positivity and Convexity in Algebraic Geometry

代数几何中的正性和凸性

基本信息

  • 批准号:
    RGPIN-2015-04776
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Although the origins of positivity and convexity are found in the natural total ordering on the real numbers, these basic structures emerge in several important and distinct ways within contemporary algebraic geometry. For instance, the theory of normal toric varieties over an algebraically closed field builds a robust dictionary between projective varieties and rational convex polytopes. In contrast, when working over a real closed field, the sections of a line bundle, whose evaluation at any real point is positive, form a convex cone that is rarely polyhedral. As a third example, Boij-Söderberg theory characterizes all of the cohomology groups for vector bundles on projective space via convex geometry. The broad aim of this research program is to understand the deep and subtle relations between these various incarnations of positivity and convexity. Because these fundamental problems connect many different areas of mathematics including algebraic geometry, commutative algebra, optimization, combinatorics, and convex geometry, advances will likely impact and influence a large community.****The long-term goals are to discover new frameworks for positivity inside algebraic geometry and to refine our understanding of specific convex cones appearing in algebraic geometry. The research will produce new mathematical results and new open-source software tools. In the short-term, we will concentrate on the following three problems: ***(a) Create a comprehensive dictionary between projectivized torus-equivariant vector bundles over a complete toric variety and appropriate collections of convex polytopes. ***(b) Given any nonnegative form f of degree 2d on a real projective subvariety, develop effective bounds on the integers e for which there exists a sum of squares g of forms degree e such that the product fg is a sum of squares of forms of degree 2(d+e). ***(c) Invent new homological mechanisms for representing coherent sheaves on toric varieties as short complexes of arithmetically-free vector bundles (also known as direct sums of line bundles).***The graduate students, postdoctoral fellows, and undergraduate students who contribute to this research program, will not only obtain valuable technical and scientific skills, but they will also become competent communicators.  With their training, they will be well-positioned for a variety of careers in the mathematical sciences. **
尽管正性和凸性的起源是在实数的自然全序中找到的,但这些基本结构在当代代数几何中以几种重要且独特的方式出现。 例如,代数闭域上的正态环面簇理论在射影簇和有理凸多面体之间建立了一个强大的字典。 相反,当在实闭场上工作时,线束的截面在任何实点处的评估都是正的,形成很少是多面体的凸锥体。 作为第三个例子,Boij-Söderberg 理论通过凸几何来表征射影空间上向量丛的所有上同调群。 该研究项目的总体目标是了解积极性和凸性的不同体现之间的深刻而微妙的关系。 因为这些基本问题连接着许多不同的数学领域,包括代数几何、交换代数、优化、组合学和凸几何,所以进步可能会影响一个大的社区。****长期目标是发现代数几何内部积极性的新框架,并完善我们对代数几何中出现的特定凸锥的理解。 该研究将产生新的数学结果和新的开源软件工具。 短期内,我们将集中精力解决以下三个问题: ***(a) 在完整的环面簇上的投影环面等变向量丛和适当的凸多面体集合之间创建一个综合字典。 ***(b) 给定实射影子簇上任何 2d 次非负形式 f,在整数 e 上建立有效界,其中存在 e 次形式的平方和 g,使得乘积 fg 是 2(d+e) 次形式的平方和。 ***(c) 发明新的同调机制,将环面簇上的连贯滑轮表示为无算术向量丛的短复合体(也称为线丛直和)。***为该研究项目做出贡献的研究生、博士后研究员和本科生不仅将获得宝贵的技术和科学技能,而且还将成为有能力的传播者。  通过培训,他们将为数学科学领域的各种职业做好准备。 **

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Smith, Gregory其他文献

Modelling the global coastal ocean
Kramers–Kronig relation in attosecond transient absorption spectroscopy
阿秒瞬态吸收光谱中的克莱默斯-克罗尼格关系
  • DOI:
    10.1364/optica.474960
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Leshchenko, Vyacheslav;Hageman, Stephen J.;Cariker, Coleman;Smith, Gregory;Camper, Antoine;Talbert, Bradford K.;Agostini, Pierre;Argenti, Luca;DiMauro, Louis F.
  • 通讯作者:
    DiMauro, Louis F.
Heparin-derived supersulfated disaccharide inhibits allergic airway responses in sheep
  • DOI:
    10.1016/j.pupt.2013.12.001
  • 发表时间:
    2014-06-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Ahmed, Tahir;Smith, Gregory;Abraham, William M.
  • 通讯作者:
    Abraham, William M.
Harmonization of pipeline for preclinical multicenter MRI biomarker discovery in a rat model of post-traumatic epileptogenesis
  • DOI:
    10.1016/j.eplepsyres.2019.01.001
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Immonen, Riikka;Smith, Gregory;Grohn, Olli
  • 通讯作者:
    Grohn, Olli
Innate Immune Response to Influenza Virus at Single-Cell Resolution in Human Epithelial Cells Revealed Paracrine Induction of Interferon Lambda 1
  • DOI:
    10.1128/jvi.00559-19
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Ramos, Irene;Smith, Gregory;Fernandez-Sesma, Ana
  • 通讯作者:
    Fernandez-Sesma, Ana

Smith, Gregory的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Smith, Gregory', 18)}}的其他基金

Combinatorial Algebraic Geometry
组合代数几何
  • 批准号:
    RGPIN-2020-05724
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete Bonding of Bio-Based Adherends
生物基粘附体的离散粘合
  • 批准号:
    RGPIN-2015-04783
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebraic Geometry
组合代数几何
  • 批准号:
    RGPIN-2020-05724
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Algebraic Geometry
组合代数几何
  • 批准号:
    RGPIN-2020-05724
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Discrete Bonding of Bio-Based Adherends
生物基粘附体的离散粘合
  • 批准号:
    RGPIN-2015-04783
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
  • 批准号:
    RGPIN-2015-04776
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Development and evaluation of novel pallets
新型托盘的开发与评估
  • 批准号:
    532007-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Engage Grants Program
Discrete Bonding of Bio-Based Adherends
生物基粘附体的离散粘合
  • 批准号:
    RGPIN-2015-04783
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Under-utilized Canadian wood species for strand based products
用于线材产品的加拿大木材品种未得到充分利用
  • 批准号:
    476414-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Collaborative Research and Development Grants
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
  • 批准号:
    RGPIN-2015-04776
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
  • 批准号:
    RGPIN-2015-04776
  • 财政年份:
    2018
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
  • 批准号:
    RGPIN-2015-04776
  • 财政年份:
    2017
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
AF: Large: Collaborative Research: Algebraic Proof Systems, Convexity, and Algorithms
AF:大型:协作研究:代数证明系统、凸性和算法
  • 批准号:
    1565235
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
AF: Large: Collaborative Research: Algebraic Proof Systems, Convexity, and Algorithms
AF:大型:协作研究:代数证明系统、凸性和算法
  • 批准号:
    1565264
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Continuing Grant
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
  • 批准号:
    RGPIN-2015-04776
  • 财政年份:
    2016
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Positivity and Convexity in Algebraic Geometry
代数几何中的正性和凸性
  • 批准号:
    RGPIN-2015-04776
  • 财政年份:
    2015
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Convexity in real algebraic geometry
实代数几何中的凸性
  • 批准号:
    241225335
  • 财政年份:
    2013
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Research Grants
Dilation theory and convexity in free semi-algebraic geometry
自由半代数几何中的膨胀理论和凸性
  • 批准号:
    1101137
  • 财政年份:
    2011
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Algebraic Algorithms in Discrete Optimization and Tools for Computational Convexity
离散优化中的代数算法和计算凸性工具
  • 批准号:
    0608785
  • 财政年份:
    2006
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Standard Grant
Real algebraic geometry, convexity and topology
实代数几何、凸性和拓扑
  • 批准号:
    502861109
  • 财政年份:
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了