Algebraic Algorithms in Discrete Optimization and Tools for Computational Convexity
离散优化中的代数算法和计算凸性工具
基本信息
- 批准号:0608785
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-15 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a research project in Computational Mathematics. Our goal is to use new algebraic ideas for the development of algorithms to solve discrete optimization problems. Discrete optimization is the study of optimization problems in which there are a finite (but usually very large) number of potential solutions. These are not enumerated but rather defined implicitly by equation or inequality constraints, e.g., linear or nonlinear relations. We focus in non-linear integer programs with polynomial constraints which are notoriously difficult and we explore several non-traditional tools for solving them, including multivariate rational functions and complex analysis, polynomial Hilbert's Nullstellensatz certificates, and new canonical reformulations for integer linear programs. We are also interested on closely related problems in computational convexity. Including the computation of polyhedra related to optimization, the practical approximation of regions by unions of polyhedra and the solution of geometric problems using convex programming methods.Software and algorithms for solving discrete optimization problems has potential applications to many fields of huge practical importance, such as data mining, finances and economics, transport scheduling (e.g. crew scheduling problems), and circuit design. Examples of discrete optimization problems include the minimum spanning tree problem of selecting the least expensive network connecting given sites or the traveling salesman problem (TSP) consists of selecting the least expensive tour of a given set of locations. Since most discrete optimization problems are useful but very difficult to solve, researchers have explored special structures to be able to solve them in practice (e.g., in the case of the TSP) or settle for algorithms that compute near-optimal solutions. In our project we try non-traditional tools based on recent mathematical progress as a way to approach these very difficult problems. We also have a strong educational component for this project. Several graduate and undergraduate students will all play important roles in the project's development.
这是一个计算数学的研究项目。我们的目标是使用新的代数思想来开发解决离散优化问题的算法。离散优化是研究存在有限(但通常非常大)数量的潜在解的优化问题。这些不是枚举的,而是通过等式或不等式约束隐含地定义的,例如,线性或非线性关系。我们专注于非线性整数规划与多项式的约束,这是出了名的困难,我们探索了几个非传统的工具来解决它们,包括多元有理函数和复杂的分析,多项式希尔伯特的Nullstellenbrands证书,和新的规范的整数线性规划的重新制定。我们也对计算凸性中密切相关的问题感兴趣。包括与优化相关的多面体计算、多面体并集的实际近似以及使用凸规划方法解决几何问题。解决离散优化问题的软件和算法在许多具有巨大实际意义的领域中具有潜在的应用,例如数据挖掘、金融和经济、运输调度(例如机组调度问题)和电路设计。离散优化问题的例子包括选择连接给定站点的最便宜网络的最小生成树问题或由选择给定位置集合的最便宜行程组成的旅行推销员问题(TSP)。由于大多数离散优化问题是有用的,但很难解决,研究人员已经探索了特殊的结构,以便能够在实践中解决它们(例如,在TSP的情况下)或满足于计算接近最优解的算法。在我们的项目中,我们尝试基于最新数学进展的非传统工具,作为解决这些非常困难的问题的一种方式。我们在这个项目中也有很强的教育成分。一些研究生和本科生都将在项目的发展中发挥重要作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesus De Loera其他文献
Jesus De Loera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesus De Loera', 18)}}的其他基金
Combinatorial, Computational, and Applied Algebraic Geometry, Seattle 2022
组合、计算和应用代数几何,西雅图 2022
- 批准号:
2142724 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
A Two-Way Research Street: Geometric Algorithms in Optimization and Computer-Based Discrete Geometry
双向研究街:优化中的几何算法和基于计算机的离散几何
- 批准号:
1818969 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Bay Area Optimization Meeting 2017: From Data to Decisions.
2017 年湾区优化会议:从数据到决策。
- 批准号:
1643426 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Randomized and Structure-Based Algorithms in Commutative Algebra
合作研究:交换代数中的随机和基于结构的算法
- 批准号:
1522158 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Convexity, Topology, Combinatorics and beyond: An international conference
凸性、拓扑学、组合学及其他:国际会议
- 批准号:
1068187 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Algebraic and Geometric Computation with Applications
代数和几何计算及其应用
- 批准号:
0914107 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
EMSW21-VIGRE: Focus on Mathematics
EMSW21-VIGRE:专注于数学
- 批准号:
0636297 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Computational Polyhedral Geometry: Applications in Algebra, Combinatorics, and Optimization
计算多面体几何:在代数、组合学和优化中的应用
- 批准号:
0309694 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
Discrete and Computational Geometry Workshops at MSRI
MSRI 的离散和计算几何研讨会
- 批准号:
0336393 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
Computational Studies in Polyhedral Convexity: Lattice Points and Triangulations
多面体凸性的计算研究:格点和三角剖分
- 批准号:
0073815 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Analysis of algorithms for resouce allocation: an approach from market design and discrete convex analysis
资源分配算法分析:市场设计和离散凸分析的方法
- 批准号:
22KJ0717 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
- 批准号:
RGPIN-2020-06311 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
- 批准号:
RGPIN-2020-06311 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
- 批准号:
RGPIN-2020-06311 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Discrete disordered systems: extremes, algorithms, and optimization.
离散无序系统:极值、算法和优化。
- 批准号:
RGPIN-2017-04330 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
- 批准号:
RGPIN-2015-06342 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Algorithms for large-scale discrete optimization problems arising in logistics and machine learning
物流和机器学习中出现的大规模离散优化问题的算法
- 批准号:
RGPIN-2020-06311 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Discrete disordered systems: extremes, algorithms, and optimization.
离散无序系统:极值、算法和优化。
- 批准号:
RGPIN-2017-04330 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Modeling and Algorithms for Discrete Problems
离散问题的建模和算法
- 批准号:
20K04978 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)