Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
基本信息
- 批准号:RGPIN-2016-03871
- 负责人:
- 金额:$ 3.28万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With an explosion in data sets in our society, we are at the beginning of a big data revolution. Big data has a potential to accelerate the pace of discovery in science, engineering, and medicine, improve healthcare, finance, business, and our lives, and ultimately transform our society.
To tap the opportunities afforded by the big data revolution, however, many challenges of big data have to be carefully addressed. For example, to fast access remotely, and reduce the on-going cost of maintaining, huge volumes of digital data, it is desirable to compress data as much as possible. Likewise, to glean knowledge and discoveries from huge volumes of digital data, tools and techniques based on context analytics have to be developed to organize, visualize, and manage huge volumes of digital data. Efficient data compression and accurate context analytics are of vital importance to turning big data to knowledge and discoveries to actions while achieving resource (bandwidth and power) efficiency.
In the past, data compression and data analytics have been largely investigated separately in different disciplines. Although data compression has been around for many years, its existing theories and techniques, especially source coding theory from information theory, have been largely developed for stationary and/or well-structured data (such as text, web pages, etc.). In the context of big data, however, most data types are nonstationary and unstructured/semi-structured; applying existing compression techniques directly to these data types often leads to unsatisfied compression performance. Therefore, it is imperative to develop novel compression theories and techniques by incorporating data analytics into data compression to handle the lack of structure and stationarity in an elegant way. In the opposite direction, it is also beneficial to investigate how to apply information theoretic ideas, particularly source coding theory and techniques, to data analytics to develop better solutions for data analytics such as cognitive distance, clustering, and organization.
Building on our early success, in this research, we will investigate and explore the interactions of data compression and analytics to advance knowledge in both fields. Our approach will be information theoretic. Three theme areas will be focused on: (1) interactions of data compression and analytics to improve lossy compression performance for nonstationary and unstructured data; (2) interactions of data compression and analytics to develop better cognitive distances and hence provide better tools for data clustering and organization; and (3) compression of and pattern discovery in large bipartite graphs. In the process of achieving our scientific objectives, we will maintain and enhance our leadership in the related areas, and train highly qualified personnel in information and communications technology for Canada.
随着我们社会中数据集的爆炸式增长,我们正处于大数据革命的开端。大数据有可能加快科学、工程和医学领域的发现步伐,改善医疗保健、金融、商业和我们的生活,并最终改变我们的社会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang, Enhui其他文献
Asphalt Concrete Layer to Support Track Slab of High-Speed Railway
- DOI:
10.3141/2505-02 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:1.7
- 作者:
Yang, Enhui;Wang, Kelvin C. P.;Qiu, Yanjun - 通讯作者:
Qiu, Yanjun
Enterovirus 2C Protein Suppresses IKKα Phosphorylation by Recruiting IKKβ and IKKα into Viral Inclusion Bodies
肠道病毒 2C 蛋白通过招募 IKKα 和 IKKα 进入病毒包涵体来抑制 IKKα 磷酸化。
- DOI:
10.1089/vim.2020.0173 - 发表时间:
2020-11-23 - 期刊:
- 影响因子:2.2
- 作者:
Ji, Lianfu;Yang, Enhui;Chen, Deyan - 通讯作者:
Chen, Deyan
Development of a Novel Live-Line Inspection Robot System for Post Insulators at 220-kV Substations
- DOI:
10.1163/016918610x487117 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:2
- 作者:
Wang, Shigang;Yang, Enhui;Mo, Jinqiu - 通讯作者:
Mo, Jinqiu
HMGB1 Release Induced by EV71 Infection Exacerbates Blood-Brain Barrier Disruption via VE-cadherin Phosphorylation.
- DOI:
10.1016/j.virusres.2023.199240 - 发表时间:
2023-12 - 期刊:
- 影响因子:5
- 作者:
You, Qiao;Wu, Jing;Liu, Ye;Zhang, Fang;Jiang, Na;Tian, Xiaoyan;Cai, Yurong;Yang, Enhui;Lyu, Ruining;Zheng, Nan;Chen, Deyan;Wu, Zhiwei - 通讯作者:
Wu, Zhiwei
Performance comparison of warm mix asphalt for plateau area
- DOI:
10.1080/14680629.2020.1820889 - 发表时间:
2020-09-26 - 期刊:
- 影响因子:3.7
- 作者:
Yang, Enhui;Xu, Jiaqiu;Qiu, Yanjun - 通讯作者:
Qiu, Yanjun
Yang, Enhui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang, Enhui', 18)}}的其他基金
Information Theoretic Coding for Deep Neural Networks: Frameworks, Theory, and Algorithms
深度神经网络的信息论编码:框架、理论和算法
- 批准号:
RGPIN-2022-03526 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Information Theory and Applications
信息论与应用
- 批准号:
CRC-2016-00083 - 财政年份:2022
- 资助金额:
$ 3.28万 - 项目类别:
Canada Research Chairs
Information Theory And Applications
信息论及其应用
- 批准号:
CRC-2016-00083 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Canada Research Chairs
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
- 批准号:
RGPIN-2016-03871 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
- 批准号:
RGPIN-2016-03871 - 财政年份:2020
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
- 批准号:
RGPIN-2016-03871 - 财政年份:2018
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
- 批准号:
RGPIN-2016-03871 - 财政年份:2017
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Joint optimization problems in source coding and their applications
源代码中的联合优化问题及其应用
- 批准号:
203035-2002 - 财政年份:2005
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Digital Video and Audio: Efficient real-time compression and watermarking
数字视频和音频:高效的实时压缩和水印
- 批准号:
262895-2002 - 财政年份:2004
- 资助金额:
$ 3.28万 - 项目类别:
Collaborative Research and Development Grants
Joint optimization problems in source coding and their applications
源代码中的联合优化问题及其应用
- 批准号:
203035-2002 - 财政年份:2004
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Collaborative Research: Mathematical Foundation of Learning with Information-Theoretic Criteria from Non-Gaussian Data
协作研究:利用非高斯数据的信息理论标准学习的数学基础
- 批准号:
2110826 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: An Information-Theoretic Foundation for Adaptive Bidding in First-Price Auctions
合作研究:CIF:媒介:一价拍卖中自适应出价的信息理论基础
- 批准号:
2106467 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Foundation of Learning with Information-Theoretic Criteria from Non-Gaussian Data
协作研究:利用非高斯数据的信息理论标准学习的数学基础
- 批准号:
2111080 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: An Information-Theoretic Foundation for Adaptive Bidding in First-Price Auctions
合作研究:CIF:媒介:一价拍卖中自适应出价的信息理论基础
- 批准号:
2106508 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
- 批准号:
RGPIN-2016-03871 - 财政年份:2021
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
- 批准号:
RGPIN-2016-03871 - 财政年份:2020
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
CIF: Medium: Collaborative Research: Information-theoretic Guarantees on Privacy in the Age of Learning
CIF:媒介:协作研究:学习时代隐私的信息理论保证
- 批准号:
1901243 - 财政年份:2019
- 资助金额:
$ 3.28万 - 项目类别:
Continuing Grant
CIF: Medium: Collaborative Research: Information-theoretic Guarantees on Privacy in the Age of Learning
CIF:媒介:协作研究:学习时代隐私的信息理论保证
- 批准号:
1900750 - 财政年份:2019
- 资助金额:
$ 3.28万 - 项目类别:
Continuing Grant
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
- 批准号:
RGPIN-2016-03871 - 财政年份:2019
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual
Information Theoretic Research on Big Data Compression and Analytics: Theory, Algorithms, and Applications
大数据压缩与分析的信息论研究:理论、算法与应用
- 批准号:
RGPIN-2016-03871 - 财政年份:2018
- 资助金额:
$ 3.28万 - 项目类别:
Discovery Grants Program - Individual