CIF: Medium: Collaborative Research: Information-theoretic Guarantees on Privacy in the Age of Learning
CIF:媒介:协作研究:学习时代隐私的信息理论保证
基本信息
- 批准号:1901243
- 负责人:
- 金额:$ 81.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Armed with powerful advances in machine learning, the ability of an interested party to gather personal information from an individual's expanding digital footprint is outstripping anyone's capability to keep their information private. While this aggregated data can have tremendous benefit for consumers and data scientists via technologies built on machine learning and artificial intelligence, this benefit must be tempered with meaningful assurances of privacy for the very people who provided the data in the first place. This project adopts a rigorous information-theoretic approach to give meaningful privacy guarantees while still providing statistical utility. By combining theoretical and data-driven research, this project can inform public policy as well as best-practices for industry. The overall goal is to provide any data scientist with a set of tools to guarantee meaningful privacy in practice. To do so, this project explores meaningful measures of privacy leakage in the learning context, characterizes the fundamental tradeoffs between privacy and utility, develops techniques to ensure privacy in realistic settings, and tests these algorithms on publicly available datasets. The project is also committed to broadening participation in computing via two outreach efforts: (i) interactive demonstrations of privacy issues that stem from using social media to middle and high school students via ASU's annual STEM event, Open Door, and (ii) teaching modules on machine learning (ML) and artificial intelligence (AI), and short courses ("data jams") at ASU via the Young Engineers Shape the World (YESW) summer program and at Harvard; these modules, targeted at female, financially disadvantaged, and Latino and Hispanic students, aim to make a meaningful contribution to increasing a diverse STEM workforce by providing students hands-on experience on basic concepts of coding, manipulating datasets, and producing simple visualizations collectively. Outreach efforts will be evaluated using well understood metrics for assessment of student interest, engagement, and knowledge via ASU?s College Research and Evaluation Services Team (CREST).This project aims to derive a foundational, statistical theory of privacy that builds upon and contributes to modern theoretical advances in information theory and machine learning. The statistical nature of inference (both for legitimate and illegitimate ends) requires a statistical approach to measuring and ensuring privacy and utility. A significant novel element derived from this view is the maximal alpha leakage, a new, tunable measure for information leakage which quantifies the ability of an adversary to learn any function of private data via a parametric class of loss functions. This tunable measure is derived from a rich information-theoretic framework based on Renyi divergence, thereby uniting disparate existing measures under a single framework. Moreover, its operational significance and computational flexibility allow for natural application in machine learning. In the context of these measures, this project studies privacy-utility tradeoffs both theoretically and in a data-driven manner in two distinct settings: (i) releasing datasets in a similar form as the original, with privacy and strict utility guarantees for arbitrary statistical analysis, and (ii) releasing privacy-guaranteed data representations for specific learning tasks. Broader dissemination of the work will go beyond conferences to organizing a privacy workshop in the latter half of the project to enable inter-disciplinary interactions and application.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
凭借机器学习的强大进步,相关方从个人不断扩大的数字足迹中收集个人信息的能力超过了任何人保持其信息私密性的能力。虽然这些聚合数据可以通过基于机器学习和人工智能的技术为消费者和数据科学家带来巨大的好处,但这种好处必须通过对最初提供数据的人的有意义的隐私保证来调节。该项目采用严格的信息论方法来提供有意义的隐私保证,同时仍然提供统计实用性。通过结合理论和数据驱动的研究,该项目可以为公共政策以及行业最佳实践提供信息。总体目标是为任何数据科学家提供一套工具,以保证实践中有意义的隐私。为此,该项目探索了学习环境中隐私泄露的有意义的措施,描述了隐私和效用之间的基本权衡,开发了确保现实环境中隐私的技术,并在公开数据集上测试了这些算法。该项目还致力于通过两项外展工作扩大对计算的参与:(i) 通过亚利桑那州立大学的年度 STEM 活动 Open Door,向中学生和高中生展示因使用社交媒体而产生的隐私问题的互动演示,以及 (ii) 机器学习 (ML) 和人工智能 (AI) 的教学模块,以及亚利桑那州立大学通过青年工程师塑造世界 (YESW) 暑期项目和哈佛大学举办的短期课程(“数据堵塞”);这些模块针对女性、经济困难、拉丁裔和西班牙裔学生,旨在通过为学生提供编码、操作数据集和生成简单可视化基本概念的实践经验,为增加多元化的 STEM 劳动力做出有意义的贡献。外展工作将通过亚利桑那州立大学的大学研究和评估服务团队 (CREST) 使用众所周知的指标来评估学生的兴趣、参与度和知识。该项目旨在推导出一种基础的隐私统计理论,该理论建立在信息论和机器学习的现代理论进步的基础上并为其做出贡献。推理的统计性质(无论是为了合法的还是非法的目的)需要一种统计方法来衡量和确保隐私和实用性。从这个观点衍生出的一个重要的新颖元素是最大阿尔法泄漏,这是一种新的、可调节的信息泄漏度量,它量化了对手通过参数类损失函数学习私有数据的任何函数的能力。这种可调措施源自基于 Renyi 散度的丰富信息理论框架,从而将不同的现有措施统一在一个框架下。此外,其操作意义和计算灵活性允许在机器学习中自然应用。在这些措施的背景下,该项目从理论上和以数据驱动的方式在两种不同的环境中研究隐私与效用的权衡:(i)以与原始形式类似的形式发布数据集,并为任意统计分析提供隐私和严格的效用保证,以及(ii)为特定学习任务发布隐私保证的数据表示。这项工作的更广泛传播将超越会议,在项目后半段组织隐私研讨会,以实现跨学科互动和应用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tunable Measures for Information Leakage and Applications to Privacy-Utility Tradeoffs
- DOI:10.1109/tit.2019.2935768
- 发表时间:2019-12-01
- 期刊:
- 影响因子:2.5
- 作者:Liao, Jiachun;Kosut, Oliver;Calmon, Flavio du Pin
- 通讯作者:Calmon, Flavio du Pin
Evaluating Multiple Guesses by an Adversary via a Tunable Loss Function
通过可调谐损失函数评估对手的多个猜测
- DOI:10.1109/isit45174.2021.9517733
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kurri, Gowtham R.;Kosut, Oliver;Sankar, Lalitha
- 通讯作者:Sankar, Lalitha
Being Properly Improper
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:R. Nock;Tyler Sypherd;L. Sankar
- 通讯作者:R. Nock;Tyler Sypherd;L. Sankar
α-GAN: Convergence and Estimation Guarantees
α-GAN:收敛和估计保证
- DOI:10.1109/isit50566.2022.9834890
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kurri, Gowtham R.;Welfert, Monica;Sypherd, Tyler;Sankar, Lalitha
- 通讯作者:Sankar, Lalitha
On the Robustness of Information-Theoretic Privacy Measures and Mechanisms
论信息论隐私措施和机制的稳健性
- DOI:10.1109/tit.2019.2939472
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Diaz, Mario;Wang, Hao;Calmon, Flavio P.;Sankar, Lalitha
- 通讯作者:Sankar, Lalitha
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lalitha Sankar其他文献
Label Noise Robustness for Domain-Agnostic Fair Corrections via Nearest Neighbors Label Spreading
通过最近邻标签传播实现与域无关的公平校正的标签噪声鲁棒性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nathan Stromberg;Rohan Ayyagari;Sanmi Koyejo;Richard Nock;Lalitha Sankar - 通讯作者:
Lalitha Sankar
Last Iterate Convergence of Popov Method for Non-monotone Stochastic Variational Inequalities
非单调随机变分不等式波波夫方法的最后迭代收敛
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Daniil Vankov;A. Nedich;Lalitha Sankar - 通讯作者:
Lalitha Sankar
Lalitha Sankar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lalitha Sankar', 18)}}的其他基金
Exploiting Physical and Dynamical Structures for Real-time Inference in Electric Power Systems
利用物理和动态结构进行电力系统实时推理
- 批准号:
2246658 - 财政年份:2023
- 资助金额:
$ 81.7万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Fair Federated Representation Learning for Breast Cancer Risk Scoring
合作研究:SCH:乳腺癌风险评分的公平联合表示学习
- 批准号:
2205080 - 财政年份:2022
- 资助金额:
$ 81.7万 - 项目类别:
Standard Grant
Unifying Information- and Optimization-Theoretic Approaches for Modeling and Training Generative Adversarial Networks
统一信息理论和优化理论方法来建模和训练生成对抗网络
- 批准号:
2134256 - 财政年份:2021
- 资助金额:
$ 81.7万 - 项目类别:
Continuing Grant
RAPID: SaTC: FACT: Federated Analytics based Contact Tracing for COVID-19
RAPID:SaTC:事实:基于联合分析的 COVID-19 接触者追踪
- 批准号:
2031799 - 财政年份:2020
- 资助金额:
$ 81.7万 - 项目类别:
Standard Grant
CIF: Small: Alpha Loss: A New Framework for Understanding and Trading Off Computation, Accuracy, and Robustness in Machine Learning
CIF:小:Alpha 损失:理解和权衡机器学习中的计算、准确性和鲁棒性的新框架
- 批准号:
2007688 - 财政年份:2020
- 资助金额:
$ 81.7万 - 项目类别:
Standard Grant
Student Travel Support for the 2020 IEEE SGComm Conference. To be Held November, 11-13, 2020 at Arizona State University.
2020 年 IEEE SGComm 会议的学生旅行支持。
- 批准号:
2024805 - 财政年份:2020
- 资助金额:
$ 81.7万 - 项目类别:
Standard Grant
Collaborative Research: High-Dimensional Spatio-Temporal Data Science for a Resilient Power Grid: Towards Real-Time Integration of Synchrophasor Data
合作研究:弹性电网的高维时空数据科学:同步相量数据的实时集成
- 批准号:
1934766 - 财政年份:2019
- 资助金额:
$ 81.7万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Generative Adversarial Privacy: A Data-driven Approach to Guaranteeing Privacy and Utility
CIF:小型:协作研究:生成对抗性隐私:保证隐私和实用性的数据驱动方法
- 批准号:
1815361 - 财政年份:2018
- 资助金额:
$ 81.7万 - 项目类别:
Standard Grant
CPS: TTP Option: Synergy: A Verifiable Framework for Cyber- Physical Attacks and Countermeasures in a Resilient Electric Power Grid
CPS:TTP 选项:协同:弹性电网中网络物理攻击和对策的可验证框架
- 批准号:
1449080 - 财政年份:2015
- 资助金额:
$ 81.7万 - 项目类别:
Cooperative Agreement
CAREER: Privacy-Guaranteed Distributed Interactions in Critical Infrastructure Networks
职业:关键基础设施网络中保证隐私的分布式交互
- 批准号:
1350914 - 财政年份:2014
- 资助金额:
$ 81.7万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 81.7万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 81.7万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 81.7万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 81.7万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 81.7万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312229 - 财政年份:2023
- 资助金额:
$ 81.7万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 81.7万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
- 批准号:
2312666 - 财政年份:2023
- 资助金额:
$ 81.7万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312228 - 财政年份:2023
- 资助金额:
$ 81.7万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
- 批准号:
2312547 - 财政年份:2023
- 资助金额:
$ 81.7万 - 项目类别:
Continuing Grant














{{item.name}}会员




