Motion compensation for transcatheter aortic valve implantation

经导管主动脉瓣植入的运动补偿

基本信息

  • 批准号:
    RGPIN-2016-04251
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Advanced visualization tools of medical image data are paramount to ensure safe navigation during Transcatheter Aortic Valve Implantations (TAVI). The main goal of this research program is to propose a methodology for image-based breathing motion compensation for navigation guidance during TAVI. TAVI is becoming an appealing alternative to traditional open­-heart valve surgery, reducing operating time and improving patient recovery. TAVI is currently performed under single view X-­ray angiography guidance, which does not provide any depth information. Cardiologists must evaluate the optimality of valve placement and deploy the valve with perfect timing, all under a complex motion. The predominant role of imaging has been recognized since the early stages of valve implantation. Recent advances in X-­ray angiography suites nowadays allow moving a single radiographic source freely in space to acquire images from any arbitrary views. This technique, called X­-ray rotational angiography is promising to acquire multiple images for a full 3D reconstruction prior to the intervention. First, at the beginning of the intervention, the aorta of the patient in apnea will be reconstructed in 3D using X­-ray rotational angiography. During the intervention, atlas-­based 3D reconstruction and 3D­-2D registration will be investigated to produce robust and accurate overlay of the aorta over X­-ray angiography considering breathing motion. This approach will incorporate both patient­-specific and population-­specific motion information. From a single X­-ray angiography sequence, the 3D volume computed previously and acquired in the patient’s reference frame, will be updated by successive non­-rigid 3D-­2D registration. A consistency preserving approach based on dynamic time warping will be considered for modelling and learning the cyclic respiratory motion patterns in 2D and afterwards in 3D. Dynamic time warping is widely used in the speech recognition community for measuring similarity between two temporal sequences and would contribute to match actual motion pattern with motion patterns from generic motion atlas. A motion atlas, based on our previous work on monoplane stochastic motion compensation, will be learned from successive registration to represent the spatial motion in a reproducible manner from X-­ray angiography (patient­-specific). Furthermore, preoperative motion atlases will be constructed from both simulated data and from real patient datasets to better generalize the complex cardiovascular motion pattern (population-­specific). The long-term objective of this research program is to generate an online navigation system for multimodality image fusion during TAVI, with dynamic overlay of several preoperative imaging modalities on real-time per operative imaging such as X-ray angiography of transoesophagal echocardiography.
先进的医学图像数据可视化工具对于确保经导管主动脉瓣植入(TAVI)期间的安全导航至关重要。本研究计划的主要目标是提出一种基于图像的呼吸运动补偿方法,用于TAVI期间的导航引导。TAVI正在成为传统心脏瓣膜手术的一种有吸引力的替代方案,减少了手术时间,提高了患者的康复。目前TAVI是在单视图X线血管造影指导下进行的,不能提供任何深度信息。心脏病专家必须评估瓣膜放置的最佳性,并在完美的时机部署瓣膜,所有这些都是在复杂的运动下进行的。自瓣膜植入术早期以来,影像学的主导作用已被认识到。X射线血管造影套件的最新进展现在允许在空间中自由移动单个放射源,以从任何任意视图获取图像。这种被称为X线旋转血管造影的技术有望在介入前获得多幅图像,进行完整的3D重建。首先,在干预开始时,使用X线旋转血管造影术在3D中重建呼吸暂停患者的主动脉。在干预期间,将研究基于图谱的3D重建和3D -2D配准,以在考虑呼吸运动的X线血管造影上生成可靠且准确的主动脉覆盖。这种方法将结合患者特定和人群特定的运动信息。从单个X线血管造影序列中,先前计算并在患者参考框架中获得的3D体积将通过连续的非刚性3D- 2D注册来更新。基于动态时间翘曲的一致性保持方法将被考虑用于建模和学习循环呼吸运动模式在二维和之后的三维。动态时间翘曲被广泛应用于语音识别领域,用于测量两个时间序列之间的相似度,有助于将实际运动模式与通用运动图谱中的运动模式匹配起来。运动图谱,基于我们之前的单面随机运动补偿的工作,将从连续的配准中学习,以可复制的方式从X射线血管造影(患者特异性)中表示空间运动。此外,术前运动图谱将从模拟数据和真实患者数据集构建,以更好地概括复杂的心血管运动模式(人群特异性)。本研究计划的长期目标是在TAVI期间生成一个用于多模态图像融合的在线导航系统,将多种术前成像模式动态叠加在实时术中成像上,如经食管超声心动图的x线血管造影。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Duong, Luc其他文献

Assessment of sacral doming in lumbosacral spondylolisthesis
  • DOI:
    10.1097/brs.0b013e31811ebaa1
  • 发表时间:
    2007-08-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Mac-Thiong, Jean-Marc;Labelle, Hubert;Duong, Luc
  • 通讯作者:
    Duong, Luc
Semi-supervised generative adversarial networks for the segmentation of the left ventricle in pediatric MRI
  • DOI:
    10.1016/j.compbiomed.2020.103884
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Decourt, Colin;Duong, Luc
  • 通讯作者:
    Duong, Luc
Reliability of the Spinal Deformity Study Group Classification of Lumbosacral Spondylolisthesis
  • DOI:
    10.1097/brs.0b013e3182233969
  • 发表时间:
    2012-01-15
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Mac-Thiong, Jean-Marc;Duong, Luc;Labelle, Hubert
  • 通讯作者:
    Labelle, Hubert
Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography
  • DOI:
    10.1364/boe.8.001203
  • 发表时间:
    2017-02-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Abdolmanafi, Atefeh;Duong, Luc;Cheriet, Farida
  • 通讯作者:
    Cheriet, Farida
Automatic Detection of Scoliotic Curves in Posteroanterior Radiographs

Duong, Luc的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Duong, Luc', 18)}}的其他基金

Smart navigation guidance during cardiac interventions
心脏介入期间的智能导航引导
  • 批准号:
    RGPIN-2021-03078
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Smart navigation guidance during cardiac interventions
心脏介入期间的智能导航引导
  • 批准号:
    RGPIN-2021-03078
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Towards real-time finite element simulations with machine learning for spinal surgical pre-operative planning
通过机器学习进行实时有限元模拟以进行脊柱外科术前规划
  • 批准号:
    543780-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Engage Grants Program
Motion compensation for image-guided coronary intervention
图像引导冠状动脉介入治疗的运动补偿
  • 批准号:
    386360-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Motion compensation for image-guided coronary intervention
图像引导冠状动脉介入治疗的运动补偿
  • 批准号:
    386360-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Electromagnetic measurement system for intravascular motion compensation
血管内运动补偿电磁测量系统
  • 批准号:
    437826-2013
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Motion compensation for image-guided coronary intervention
图像引导冠状动脉介入治疗的运动补偿
  • 批准号:
    386360-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Motion compensation for image-guided coronary intervention
图像引导冠状动脉介入治疗的运动补偿
  • 批准号:
    386360-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Motion compensation for image-guided coronary intervention
图像引导冠状动脉介入治疗的运动补偿
  • 批准号:
    386360-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
  • 批准号:
    10749672
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
  • 批准号:
    10824767
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote ecosystem stability in response to drought
NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    NE/Y00549X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Research Grant
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
  • 批准号:
    10823000
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312707
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Worker Safety by Understanding Risk Compensation as a Latent Precursor of At-risk Decisions
合作研究:通过了解风险补偿作为风险决策的潜在前兆来提高工人安全
  • 批准号:
    2326937
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
A Study on Implementation Method of Highly Efficient Motion Compensation Prediction Scheme Using DNN in Video Coding
视频编码中DNN高效运动补偿预测方案的实现方法研究
  • 批准号:
    23K03843
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
eCD4-mediated control of SIV infection in the brain
eCD4 介导的脑部 SIV 感染控制
  • 批准号:
    10698442
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了