Bayesian fusion models based on multi-level constraints and multiple criteria in image processing and computer vision
图像处理和计算机视觉中基于多级约束和多准则的贝叶斯融合模型
基本信息
- 批准号:RGPIN-2016-04578
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program investigates the use of new unsupervised (Bayesian) probabilistic or energy-based fusion models for understanding, analyzing, and manipulating still, moving and multidimensional, multispectral or multimodal images.
More precisely, this research program will attempt to propose new statistical models to synergistically integrate multiple image cues (e.g., color, texture, edges, interest point or symmetry detection, Gestalt perceptual cues, etc.) with possibly different constraints (possibly expressed at different levels of abstraction) in order to better model the intrinsic and complex properties of the (image) solution to be estimated and/or to fuse several weak solutions or different complementary low-level applications (segmentation, edge map, restored image, etc.) in order to achieve either a more reliable and accurate solution or a high-level computer vision task (3D reconstruction, complex shape localization, etc.).
These models can have a wide range of applications not only in still image processing and computer vision, but also in several other fields, including multi-modal medical image applications, Geoscience imagery and more generally in all multi-camera or multi-modal recognition and reconstruction systems of the next generation.
The adopted framework, for these different research models, mainly relies on the Bayesian statistical theory which allows to take into account some available prior knowledge on the information to be found and to combine this prior model with a (statistical) model describing the interactions between hidden and observed variables (likelihood model). In this framework, the proper use of the available prior information can be expressed by local prior models such as Markov Random Field (MRF) models and contextual knowledge is usually captured through the specification of spatially local interactions or recently through non local (or long-range) interactions. In addition, Bayesian theory makes it also possible to apply global prior (interactions) or constraints such as the natural variability of an object shape to be detected/reconstructed (via global parametric probabilistic prior models or global constraints expressed by the knowledge of a solution at a lower level of abstraction).
我的研究计划研究使用新的无监督(贝叶斯)概率或基于能量的融合模型来理解,分析和操作静态,移动和多维,多光谱或多模式图像。
更确切地说,这项研究计划将试图提出新的统计模型,以协同整合多个图像线索(例如,颜色、纹理、边缘、兴趣点或对称性检测、完形感知线索等)具有可能不同的约束(可能以不同的抽象级别表示),以便更好地对要估计的(图像)解的内在和复杂属性建模和/或融合几个弱解或不同的互补低级应用(分割、边缘图、恢复图像等)。以实现更可靠和准确的解决方案或高级计算机视觉任务(3D重建,复杂形状定位等)。
这些模型不仅在静态图像处理和计算机视觉中有广泛的应用,而且在其他几个领域也有广泛的应用,包括多模态医学图像应用,地球科学成像,更一般地说,在下一代的所有多相机或多模态识别和重建系统中。
对于这些不同的研究模型,所采用的框架主要依赖于贝叶斯统计理论,该理论允许考虑关于待发现的信息的一些可用的先验知识,并将该先验模型与描述隐藏变量和观察变量之间的相互作用的(统计)模型(似然模型)联合收割机结合。在这个框架中,可用的先验信息的正确使用可以表示为本地先验模型,如马尔可夫随机场(MRF)模型和上下文的知识通常是通过空间本地的相互作用的规范或最近通过非本地(或远程)的相互作用。此外,贝叶斯理论还可以应用全局先验(相互作用)或约束,例如要检测/重建的对象形状的自然变化(通过全局参数概率先验模型或由较低抽象级别的解决方案的知识表示的全局约束)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mignotte, Max其他文献
Localization of shapes using statistical models and stochastic optimization
- DOI:
10.1109/tpami.2007.1157 - 发表时间:
2007-09-01 - 期刊:
- 影响因子:23.6
- 作者:
Destrempes, Francois;Mignotte, Max;Angers, Jean-Francois - 通讯作者:
Angers, Jean-Francois
A biologically inspired framework for contour detection
- DOI:
10.1007/s10044-015-0494-y - 发表时间:
2017-05-01 - 期刊:
- 影响因子:3.9
- 作者:
Mignotte, Max - 通讯作者:
Mignotte, Max
A Novel Fusion Approach Based on the Global Consistency Criterion to Fusing Multiple Segmentations
- DOI:
10.1109/tsmc.2016.2531645 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:8.7
- 作者:
Khelifi, Lazhar;Mignotte, Max - 通讯作者:
Mignotte, Max
A non-local regularization strategy for image deconvolution
- DOI:
10.1016/j.patrec.2008.08.004 - 发表时间:
2008-12-01 - 期刊:
- 影响因子:5.1
- 作者:
Mignotte, Max - 通讯作者:
Mignotte, Max
Segmentation by fusion of histogram-based K-means clusters in different color spaces
- DOI:
10.1109/tip.2008.920761 - 发表时间:
2008-05-01 - 期刊:
- 影响因子:10.6
- 作者:
Mignotte, Max - 通讯作者:
Mignotte, Max
Mignotte, Max的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mignotte, Max', 18)}}的其他基金
New unsupervised Bayesian and energy-based models dedicated to image processing and computer vision applications
新的无监督贝叶斯和基于能量的模型致力于图像处理和计算机视觉应用
- 批准号:
RGPIN-2022-03654 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Bayesian fusion models based on multi-level constraints and multiple criteria in image processing and computer vision
图像处理和计算机视觉中基于多级约束和多准则的贝叶斯融合模型
- 批准号:
RGPIN-2016-04578 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Bayesian fusion models based on multi-level constraints and multiple criteria in image processing and computer vision
图像处理和计算机视觉中基于多级约束和多准则的贝叶斯融合模型
- 批准号:
RGPIN-2016-04578 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Bayesian fusion models based on multi-level constraints and multiple criteria in image processing and computer vision
图像处理和计算机视觉中基于多级约束和多准则的贝叶斯融合模型
- 批准号:
RGPIN-2016-04578 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Bayesian fusion models based on multi-level constraints and multiple criteria in image processing and computer vision
图像处理和计算机视觉中基于多级约束和多准则的贝叶斯融合模型
- 批准号:
RGPIN-2016-04578 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Bayesian statistical fusion models based on constraints and multiple criteria in image processing and computer vision
图像处理和计算机视觉中基于约束和多标准的贝叶斯统计融合模型
- 批准号:
238737-2011 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Bayesian statistical fusion models based on constraints and multiple criteria in image processing and computer vision
图像处理和计算机视觉中基于约束和多标准的贝叶斯统计融合模型
- 批准号:
238737-2011 - 财政年份:2014
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Bayesian statistical fusion models based on constraints and multiple criteria in image processing and computer vision
图像处理和计算机视觉中基于约束和多标准的贝叶斯统计融合模型
- 批准号:
238737-2011 - 财政年份:2013
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Bayesian statistical fusion models based on constraints and multiple criteria in image processing and computer vision
图像处理和计算机视觉中基于约束和多标准的贝叶斯统计融合模型
- 批准号:
238737-2011 - 财政年份:2012
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Bayesian statistical fusion models based on constraints and multiple criteria in image processing and computer vision
图像处理和计算机视觉中基于约束和多标准的贝叶斯统计融合模型
- 批准号:
238737-2011 - 财政年份:2011
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
仿生膜构建破骨细胞融合纳米诱饵用于骨质疏松治疗的研究
- 批准号:82372098
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于多模态融合Dense-Fusion深度学习网络预测原发性胃肠道间质瘤术后复发风险及靶向治疗获益性的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
若干辫子fusion范畴的弱群型性质和分类
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
饥饿胁迫下溶酶体管状形态的调控机制和生理意义研究
- 批准号:32000484
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
膜融合介导蛋白SNARE复合体在解聚过程中的作用机制研究
- 批准号:32000485
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
利用新型 pH 荧光探针研究 Syntaxin 12/13 介导的多种细胞器互作
- 批准号:92054103
- 批准年份:2020
- 资助金额:87.0 万元
- 项目类别:重大研究计划
PI(3,5)P2介导溶酶体与黑素小体互作调控黑素小体发生的分子细胞机制
- 批准号:92054102
- 批准年份:2020
- 资助金额:87.0 万元
- 项目类别:重大研究计划
脂滴与线粒体的互作在巨噬细胞和动脉粥样硬化中的作用及机制研究
- 批准号:32000482
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
细胞代谢调控线粒体稳态及其与细胞器互作的机制研究
- 批准号:91954204
- 批准年份:2019
- 资助金额:314.0 万元
- 项目类别:重大研究计划
相似海外基金
Fusion Pursuit for Pattern-Mixture Models with Application to Longitudinal Studies with Nonignorable Missing Data
模式混合模型的融合追踪及其在不可忽略缺失数据纵向研究中的应用
- 批准号:
2310217 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Gene Expression Signature Based Screening in Ewing Sarcoma
基于基因表达特征的尤文肉瘤筛查
- 批准号:
10440705 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Targeting PLK1 signaling for the treatment of fibrolamellar carcinoma
靶向 PLK1 信号传导治疗纤维板层癌
- 批准号:
10742683 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10703154 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
UBTF Tandem Duplications in Pediatric Acute Myeloid Leukemia
儿童急性髓性白血病中的 UBTF 串联重复
- 批准号:
10801150 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
- 批准号:
10826068 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Human Organoid Models for Pediatric High-Grade Gliomas
儿童高级别胶质瘤的人体类器官模型
- 批准号:
10727450 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Post-translational regulation of sperm development and function in C. elegans
秀丽隐杆线虫精子发育和功能的翻译后调控
- 批准号:
10653491 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别: