High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics

电磁学和流体动力学问题的高阶数值方法

基本信息

  • 批准号:
    RGPIN-2016-05300
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The proposal outlined in this text provides funding for my ongoing research program in computational methods applied to problems of engineering relevance in electromagnetics and fluid dynamics. In one project suitable for graduate student research, it is proposed to develop highly accurate computational methods to simulate the electromagnetic diffraction from conducting optical gratings. Indeed, the problem of simulating the electromagnetic response of material structures to an incident wave is of great importance in science and engineering. Applications of the theory exist in several fields of study, including solar energy research, optical instrument design, remote sensing, and communications theory, to name a few. Conducting materials are interesting in practice, since they are known to result in remarkably high absorption under particular circumstances in grating diffraction and hence may be useful in the design of modern solar cells. In another project, we propose to investigate the suitability of a toroidal fluid ring as basic a system to provide mechanical damping of the rotational oscillations of a satellite about an axis. It is proposed to study the flow and wall shear stresses which arise in a toroidal geometry when the toroid is subject to harmonic rotational motion about its principal axis of symmetry. The goal of the project is to determine the degree to which the viscous stresses imposed by the fluid on the wall of the toroid dissipate the mechanical energy associated with the oscillations. Interestingly this problem is related to another important problem in biomechanics: blood flow in curved tubes.
本文中概述的建议为我正在进行的电磁学和流体动力学工程相关问题的计算方法研究计划提供资金。在一个适合研究生研究的项目中,建议开发高精度的计算方法来模拟导电光栅的电磁衍射。实际上,模拟材料结构对入射波的电磁响应的问题在科学和工程中是非常重要的。该理论的应用存在于多个研究领域,包括太阳能研究、光学仪器设计、遥感和通信理论等。导电材料在实践中是令人感兴趣的,因为已知它们在光栅衍射中的特定情况下导致显著高的吸收,因此可用于现代太阳能电池的设计。在另一个项目中, 我们建议调查 环形流体环作为提供卫星绕轴旋转振荡的机械阻尼的基本系统的适用性。是 提出了研究流动和壁面剪应力时,出现在一个环形几何环是受谐波旋转运动 关于它的主对称轴。该项目的目标是确定流体对流体施加的粘性应力的程度。 环形的壁耗散与振荡相关的机械能。有趣的是,这个问题与另一个重要的 生物力学的问题:血液在弯曲的管道中流动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haslam, Michael其他文献

Use of stone hammer tools and anvils by bearded capuchin monkeys over time and space: construction of an archeological record of tool use
  • DOI:
    10.1016/j.jas.2013.03.021
  • 发表时间:
    2013-08-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Elisabetta, Visalberghi;Haslam, Michael;Fragaszy, Dorothy
  • 通讯作者:
    Fragaszy, Dorothy
Documenting contamination in ancient starch laboratories
  • DOI:
    10.1016/j.jas.2014.04.023
  • 发表时间:
    2014-09-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Crowther, Alison;Haslam, Michael;Mercader, Julio
  • 通讯作者:
    Mercader, Julio
Wild monkeys flake stone tools
  • DOI:
    10.1038/nature20112
  • 发表时间:
    2016-11-03
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Proffitt, Tomos;Luncz, Lydia V.;Haslam, Michael
  • 通讯作者:
    Haslam, Michael
Cryptotephra from the 74 ka BP Toba super-eruption in the Billa Surgam caves, southern India
  • DOI:
    10.1016/j.quascirev.2011.05.010
  • 发表时间:
    2011-07-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Lane, Christine;Haslam, Michael;Korisettar, Ravi
  • 通讯作者:
    Korisettar, Ravi
How bearded capuchin monkeys (Sapajus libidinosus) prepare to use a stone to crack nuts
  • DOI:
    10.1002/ajp.22958
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Fragaszy, Dorothy M.;Morrow, Kristen S.;Haslam, Michael
  • 通讯作者:
    Haslam, Michael

Haslam, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haslam, Michael', 18)}}的其他基金

High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
  • 批准号:
    RGPIN-2016-05300
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
  • 批准号:
    RGPIN-2016-05300
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
  • 批准号:
    RGPIN-2016-05300
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
  • 批准号:
    RGPIN-2016-05300
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
  • 批准号:
    RGPIN-2016-05300
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High-order electromagnetic modeling of antenna systems
天线系统的高阶电磁建模
  • 批准号:
    341810-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High-order electromagnetic modeling of antenna systems
天线系统的高阶电磁建模
  • 批准号:
    341810-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High-order electromagnetic modeling of antenna systems
天线系统的高阶电磁建模
  • 批准号:
    341810-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High-order electromagnetic modeling of antenna systems
天线系统的高阶电磁建模
  • 批准号:
    341810-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High-order electromagnetic modeling of antenna systems
天线系统的高阶电磁建模
  • 批准号:
    341810-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

High-order numerical methods for differential equations
微分方程的高阶数值方法
  • 批准号:
    RGPIN-2020-04663
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
  • 批准号:
    RGPIN-2016-05300
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High-order numerical methods for differential equations
微分方程的高阶数值方法
  • 批准号:
    RGPIN-2020-04663
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
  • 批准号:
    RGPIN-2017-05666
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
  • 批准号:
    2110774
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
  • 批准号:
    RGPIN-2016-04628
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
  • 批准号:
    2110768
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
  • 批准号:
    RGPIN-2016-04628
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了