High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics

电磁学和流体动力学问题的高阶数值方法

基本信息

  • 批准号:
    RGPIN-2016-05300
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The proposal outlined in this text provides funding for my ongoing research program in computational methods applied to problems of engineering relevance in electromagnetics and fluid dynamics. In one project suitable for graduate student research, it is proposed to develop highly accurate computational methods to simulate the electromagnetic diffraction from conducting optical gratings. Indeed, the problem of simulating the electromagnetic response of material structures to an incident wave is of great importance in science and engineering. Applications of the theory exist in several fields of study, including solar energy research, optical instrument design, remote sensing, and communications theory, to name a few. Conducting materials are interesting in practice, since they are known to result in remarkably high absorption under particular circumstances in grating diffraction and hence may be useful in the design of modern solar cells. In another project,we propose to investigate thesuitability of a toroidal fluid ring as basic a system to provide mechanical damping of the rotational oscillations of a satellite about an axis. It isproposed to study the flow and wall shear stresses which arise in a toroidal geometry when the toroid is subject to harmonic rotational motionabout its principal axis of symmetry. The goal of the project is to determine the degree to which the viscous stresses imposed by the fluid on thewall of the toroid dissipate the mechanical energy associated with the oscillations. Interestingly this problem is related to another importantproblem in biomechanics: blood flow in curved tubes.
本文概述的提案为我正在进行的计算方法研究计划提供了资金,这些方法适用于电磁学和流体动力学中的工程相关问题。在一个适合研究生研究的项目中,有人提议开发高精度的计算方法来模拟导电光纤光栅的电磁衍射。事实上,模拟材料结构对入射波的电磁响应问题在科学和工程中具有重要意义。该理论在几个研究领域都有应用,包括太阳能研究、光学仪器设计、遥感和通信理论,仅举几例。导电材料在实践中很有趣,因为已知它们在特定情况下在光栅衍射中会产生非常高的吸收,因此在现代太阳能电池的设计中可能是有用的。在另一个项目中,我们建议研究环形流体环作为提供卫星绕轴旋转振动的机械阻尼的基本系统的适用性。本文建议研究环面绕其主对称轴作简谐转动运动时,环面内产生的流动和壁面剪应力。该项目的目标是确定流体施加在环形壁上的粘性应力在多大程度上消散了与振动相关的机械能。有趣的是,这个问题与生物力学中的另一个重要问题有关:弯管中的血液流动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haslam, Michael其他文献

Use of stone hammer tools and anvils by bearded capuchin monkeys over time and space: construction of an archeological record of tool use
  • DOI:
    10.1016/j.jas.2013.03.021
  • 发表时间:
    2013-08-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Elisabetta, Visalberghi;Haslam, Michael;Fragaszy, Dorothy
  • 通讯作者:
    Fragaszy, Dorothy
Documenting contamination in ancient starch laboratories
  • DOI:
    10.1016/j.jas.2014.04.023
  • 发表时间:
    2014-09-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Crowther, Alison;Haslam, Michael;Mercader, Julio
  • 通讯作者:
    Mercader, Julio
Wild monkeys flake stone tools
  • DOI:
    10.1038/nature20112
  • 发表时间:
    2016-11-03
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Proffitt, Tomos;Luncz, Lydia V.;Haslam, Michael
  • 通讯作者:
    Haslam, Michael
Cryptotephra from the 74 ka BP Toba super-eruption in the Billa Surgam caves, southern India
  • DOI:
    10.1016/j.quascirev.2011.05.010
  • 发表时间:
    2011-07-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Lane, Christine;Haslam, Michael;Korisettar, Ravi
  • 通讯作者:
    Korisettar, Ravi
Primate archaeology evolves
  • DOI:
    10.1038/s41559-017-0286-4
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
    16.8
  • 作者:
    Haslam, Michael;Hernandez-Aguilar, R. Adriana;Luncz, Lydia V.
  • 通讯作者:
    Luncz, Lydia V.

Haslam, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haslam, Michael', 18)}}的其他基金

High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
  • 批准号:
    RGPIN-2016-05300
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
  • 批准号:
    RGPIN-2016-05300
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
  • 批准号:
    RGPIN-2016-05300
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
  • 批准号:
    RGPIN-2016-05300
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
  • 批准号:
    RGPIN-2016-05300
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High-order electromagnetic modeling of antenna systems
天线系统的高阶电磁建模
  • 批准号:
    341810-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High-order electromagnetic modeling of antenna systems
天线系统的高阶电磁建模
  • 批准号:
    341810-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High-order electromagnetic modeling of antenna systems
天线系统的高阶电磁建模
  • 批准号:
    341810-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High-order electromagnetic modeling of antenna systems
天线系统的高阶电磁建模
  • 批准号:
    341810-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High-order electromagnetic modeling of antenna systems
天线系统的高阶电磁建模
  • 批准号:
    341810-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

High-order numerical methods for differential equations
微分方程的高阶数值方法
  • 批准号:
    RGPIN-2020-04663
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
  • 批准号:
    RGPIN-2016-05300
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High-order numerical methods for differential equations
微分方程的高阶数值方法
  • 批准号:
    RGPIN-2020-04663
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
  • 批准号:
    RGPIN-2017-05666
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
  • 批准号:
    2110774
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
  • 批准号:
    RGPIN-2016-04628
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
  • 批准号:
    2110768
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
  • 批准号:
    RGPIN-2016-04628
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了