Geometric, topological, and stochastic approaches in nonlinear control theory

非线性控制理论中的几何、拓扑和随机方法

基本信息

  • 批准号:
    RGPIN-2016-05405
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Nonlinear control theory is an important branch of control theory, with applications in areas and industries as diverse as power grids, aerospace systems, biomedical systems, nano-engineering, process control, chemical engineering, and many others. It stands out by the richness of its problems and the diversity of mathematical areas that it connects to. Worthy of note among the latter is sub-Riemannian geometry, which continues to play a key role in our understanding of nonlinear control systems. By virtue of restricting itself to a narrow and well-behaved class of control systems, linear control theory enjoys a rich and well-established body of theoretical tools and techniques, drawn principally from linear functional analysis. By contrast, nonlinear control theory is far from enjoying this level of maturity, and intensive efforts have been deployed in devising new tools and approaches. From the advent of the first modern control systems to the present day, the two key problems of control theory continue to be, very broadly, Control and Stabilization. Whereas these notions and the relations between them are very well understood for linear control, this is still far from being the case for nonlinear control systems. The long term objective of our research program is, in very broad terms, to understand the deep nature of and the relations between controllability and stabilizability in nonlinear control systems, to the same extent as is currently the case in linear control theory. In the shorter term, we plan to concentrate on the following four problems: (a) Define the appropriate geometrical structure associated to a nonlinear control system, compute the local invariants of this geometry, and relate these invariants to local controllability and stabilizability properties of the control system. (b) Refine the existing topological obstructions to the local stabilization of a nonlinear control system through the study of topological structures canonically associated to a control system. (c) Relate the hypoelliptic heat operator of left-invariant sub-Riemannian structures on Lie groups to the conjugate structure of those geometries. (d) Extend Stein's classical method of probabilistic approximation to the computation of hypoelliptic heat kernel short-time asymptotics. The graduate and undergraduate students who will contribute to this research program will delve into very rich mathematical theories, thereby acquiring an excellent training in mathematics research, as well as an excellent preparation for a career in the mathematical sciences.
非线性控制理论是控制理论的一个重要分支,广泛应用于电网、航空航天系统、生物医学系统、纳米工程、过程控制、化学工程等领域和行业。它以其问题的丰富性和它所连接的数学领域的多样性而脱颖而出。后者中值得注意的是亚黎曼几何,它在我们对非线性控制系统的理解中继续发挥着关键作用。线性控制理论将自己限制在一个狭窄的、表现良好的控制系统类别中,因此它拥有丰富而完善的理论工具和技术体系,主要来自线性泛函分析。相比之下,非线性控制理论远未达到这种成熟程度,并且已经在设计新的工具和方法方面投入了大量的努力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mansouri, AbdolReza其他文献

Mansouri, AbdolReza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mansouri, AbdolReza', 18)}}的其他基金

Topological obstructions in the control of partial differential equations
偏微分方程控制中的拓扑障碍
  • 批准号:
    RGPIN-2022-03832
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
  • 批准号:
    RGPIN-2016-05405
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
  • 批准号:
    RGPIN-2016-05405
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
  • 批准号:
    RGPIN-2016-05405
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
  • 批准号:
    RGPIN-2016-05405
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
  • 批准号:
    RGPIN-2016-05405
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and topological approaches in nonlinear control theory
非线性控制理论中的几何和拓扑方法
  • 批准号:
    327410-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and topological approaches in nonlinear control theory
非线性控制理论中的几何和拓扑方法
  • 批准号:
    327410-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and topological approaches in nonlinear control theory
非线性控制理论中的几何和拓扑方法
  • 批准号:
    327410-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and topological approaches in nonlinear control theory
非线性控制理论中的几何和拓扑方法
  • 批准号:
    327410-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Orbifold Gromov-Witten理论研究
  • 批准号:
    11171174
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目
拓扑绝缘体中的强关联现象
  • 批准号:
    11047126
  • 批准年份:
    2010
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Topological semiconductors resonate with an elusive form of radiation
拓扑半导体与难以捉摸的辐射形式产生共振
  • 批准号:
    DP240101062
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Projects
Topological phonons in solids
固体中的拓扑声子
  • 批准号:
    DE240100627
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Early Career Researcher Award
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
  • 批准号:
    EP/Y023250/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Fellowship Award
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
  • 批准号:
    2339309
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
  • 批准号:
    2401178
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了