Automatic segmentation of healthy tissues and tumours in patient brain images using 3D fully convolutional neural networks

使用 3D 全卷积神经网络自动分割患者大脑图像中的健康组织和肿瘤

基本信息

  • 批准号:
    505357-2016
  • 负责人:
  • 金额:
    $ 8.16万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

It is estimated that over 55,000 Canadians are currently living with a brain tumour. Patients with gliomas, the most frequent primary brain tumour in adults, still have very poor prognosis despite considerable advances in research. High-grade glioma patients have a median life expectancy of two years or less, and low-grade gliomas come with a life expectancy of several years. In either case, neuroimaging protocols are employed before and after treatment in order to estimate disease progression, surgical planning and effect. Current clinical protocol involves analysis of the patient images by a radiologist, where rudimentary qualitative and quantitative metrics are employed, such as the manual measurements of tumour size, a process that is time-consuming, subjective and potentially inconsistent. The goals of this project are to develop robust, accurate and fully automatic tissue segmentation techniques that can identify both healthy and diseased tissues when applied to real, multimodal, clinical MRI, with the long-term potential benefit of improving patient diagnosis, surgical planning and follow-up. This includes the development of new machine learning (e.g. deep learning) techniques to accurately detect and segment (1) tumours into their constituent sub-structures (e.g. tumour core, edema) and (2) healthy tissues (e.g. white matter) in multi-channel patient MRI. Although deep learning frameworks have been incredibly successful at a wide variety of tasks in computer vision, their adaptation to medical image detection and segmentation, particularly of pathological structures, is still in its infancy. This is due to a multitude of new challenges presented in the context of noisy, multi-modal 3D images, and to a shortage of large-scale datasets required for training. Medical image analysis research would benefit from the development of new mathematical models and analytical tools that could potentially improve patient care and outcome, including the savings in time and the improvement in accuracy of pre-surgical planning and post-operative follow-up.
据估计,目前有超过55,000名加拿大人患有脑肿瘤。神经胶质瘤是成人中最常见的原发性脑肿瘤,尽管研究取得了相当大的进展,但患者的预后仍然很差。高级别胶质瘤患者的平均预期寿命为两年或更短,而低级别胶质瘤患者的预期寿命为几年。在任何一种情况下,在治疗前后都采用神经影像学方案,以估计疾病进展、手术计划和效果。当前的临床协议涉及由放射科医师对患者图像的分析,其中采用基本的定性和定量度量,诸如肿瘤大小的手动测量,这是一个耗时、主观且可能不一致的过程。该项目的目标是开发强大、准确和全自动的组织分割技术,当应用于真实的、多模态、临床MRI时,可以识别健康和病变组织,并具有改善患者诊断、手术计划和随访的长期潜在受益。这包括开发新的机器学习(例如深度学习)技术,以在多通道患者MRI中准确检测和分割(1)肿瘤及其组成子结构(例如肿瘤核心、水肿)和(2)健康组织(例如白色物质)。尽管深度学习框架在计算机视觉的各种任务中取得了令人难以置信的成功,但它们对医学图像检测和分割的适应,特别是对病理结构的适应,仍处于起步阶段。这是由于在嘈杂的多模态3D图像的背景下提出了许多新的挑战,以及训练所需的大规模数据集的短缺。医学图像分析研究将受益于新的数学模型和分析工具的开发,这些模型和工具可能会改善患者护理和结果,包括节省时间和提高术前计划和术后随访的准确性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arbel, Tal其他文献

Automatic Detection of Gadolinium-Enhancing Multiple Sclerosis Lesions in Brain MRI Using Conditional Random Fields
  • DOI:
    10.1109/tmi.2012.2186639
  • 发表时间:
    2012-06-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Karimaghaloo, Zahra;Shah, Mohak;Arbel, Tal
  • 通讯作者:
    Arbel, Tal
Feature-based morphometry: discovering group-related anatomical patterns.
  • DOI:
    10.1016/j.neuroimage.2009.10.032
  • 发表时间:
    2010-02-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Toews, Matthew;Wells, William, III;Collins, D. Louis;Arbel, Tal
  • 通讯作者:
    Arbel, Tal
Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images
  • DOI:
    10.1016/j.media.2015.06.004
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Karimaghaloo, Zahra;Arnold, Douglas L.;Arbel, Tal
  • 通讯作者:
    Arbel, Tal
Multi-Modal Image Registration Based on Gradient Orientations of Minimal Uncertainty
  • DOI:
    10.1109/tmi.2012.2218116
  • 发表时间:
    2012-12-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    De Nigris, Dante;Collins, D. Louis;Arbel, Tal
  • 通讯作者:
    Arbel, Tal
Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation
  • DOI:
    10.1016/j.media.2019.101557
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Nair, Tanya;Precup, Doina;Arbel, Tal
  • 通讯作者:
    Arbel, Tal

Arbel, Tal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arbel, Tal', 18)}}的其他基金

Probabilistic Inference in Computer Vision and Medical Imaging
计算机视觉和医学成像中的概率推理
  • 批准号:
    RGPIN-2015-05471
  • 财政年份:
    2021
  • 资助金额:
    $ 8.16万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Inference in Computer Vision and Medical Imaging
计算机视觉和医学成像中的概率推理
  • 批准号:
    RGPIN-2015-05471
  • 财政年份:
    2020
  • 资助金额:
    $ 8.16万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Inference in Computer Vision and Medical Imaging
计算机视觉和医学成像中的概率推理
  • 批准号:
    RGPIN-2015-05471
  • 财政年份:
    2019
  • 资助金额:
    $ 8.16万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Inference in Computer Vision and Medical Imaging
计算机视觉和医学成像中的概率推理
  • 批准号:
    RGPIN-2015-05471
  • 财政年份:
    2018
  • 资助金额:
    $ 8.16万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Inference in Computer Vision and Medical Imaging
计算机视觉和医学成像中的概率推理
  • 批准号:
    RGPIN-2015-05471
  • 财政年份:
    2017
  • 资助金额:
    $ 8.16万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Inference in Computer Vision and Medical Imaging
计算机视觉和医学成像中的概率推理
  • 批准号:
    RGPIN-2015-05471
  • 财政年份:
    2016
  • 资助金额:
    $ 8.16万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic Inference in Computer Vision and Medical Imaging
计算机视觉和医学成像中的概率推理
  • 批准号:
    RGPIN-2015-05471
  • 财政年份:
    2015
  • 资助金额:
    $ 8.16万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic inference in computer vision and medical imaging
计算机视觉和医学成像中的概率推理
  • 批准号:
    238845-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 8.16万
  • 项目类别:
    Discovery Grants Program - Individual
Probabilistic segmentation of multiple sclerosis lesions brain images
多发性硬化症病变脑图像的概率分割
  • 批准号:
    411455-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 8.16万
  • 项目类别:
    Collaborative Research and Development Grants
Probabilistic inference in computer vision and medical imaging
计算机视觉和医学成像中的概率推理
  • 批准号:
    238845-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 8.16万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Near real-time system for high-resolution computationalTMS navigation
用于高分辨率计算 TMS 导航的近实时系统
  • 批准号:
    10345482
  • 财政年份:
    2022
  • 资助金额:
    $ 8.16万
  • 项目类别:
The role of prior knowledge and event segmentation in age- and Alzheimer's-related changes in event memory
先验知识和事件分割在年龄和阿尔茨海默病相关事件记忆变化中的作用
  • 批准号:
    10529012
  • 财政年份:
    2022
  • 资助金额:
    $ 8.16万
  • 项目类别:
Quantitative Analysis of Carpal Kinematics Using 3D Dynamic MRI
使用 3D 动态 MRI 定量分析腕骨运动学
  • 批准号:
    10354380
  • 财政年份:
    2022
  • 资助金额:
    $ 8.16万
  • 项目类别:
Near real-time system for high-resolution computationalTMS navigation
用于高分辨率计算 TMS 导航的近实时系统
  • 批准号:
    10558627
  • 财政年份:
    2022
  • 资助金额:
    $ 8.16万
  • 项目类别:
A placenta-based strategy for improved clinical prediction of fetal growth trajectory using automated image analysis of placental morphology and vascularity
基于胎盘的策略,使用胎盘形态和血管分布的自动图像分析来改进胎儿生长轨迹的临床预测
  • 批准号:
    10512601
  • 财政年份:
    2022
  • 资助金额:
    $ 8.16万
  • 项目类别:
Quantitative Analysis of Carpal Kinematics Using 3D Dynamic MRI
使用 3D 动态 MRI 定量分析腕骨运动学
  • 批准号:
    10554164
  • 财政年份:
    2022
  • 资助金额:
    $ 8.16万
  • 项目类别:
The role of prior knowledge and event segmentation in age- and Alzheimer's-related changes in event memory
先验知识和事件分割在年龄和阿尔茨海默病相关事件记忆变化中的作用
  • 批准号:
    10698135
  • 财政年份:
    2022
  • 资助金额:
    $ 8.16万
  • 项目类别:
PET-MR Imaging of pulmonary fibrosis
肺纤维化的 PET-MR 成像
  • 批准号:
    10430239
  • 财政年份:
    2021
  • 资助金额:
    $ 8.16万
  • 项目类别:
Connectomic Biomarkers of Preclinical Alzheimer's Disease within Multi-Synaptic Pathways
多突触通路内临床前阿尔茨海默病的连接组生物标志物
  • 批准号:
    10213243
  • 财政年份:
    2021
  • 资助金额:
    $ 8.16万
  • 项目类别:
Novel Computed Tomography (CT) Imaging Biomarkers in Older Adults for Predicting Adverse Geriatric Health Outcomes
用于预测老年人不良健康结果的新型计算机断层扫描 (CT) 成像生物标志物
  • 批准号:
    10303313
  • 财政年份:
    2021
  • 资助金额:
    $ 8.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了