Fast and accurate biophotonic simulations for photodynamic cancer therapy treatment planning

快速准确的生物光子模拟用于光动力癌症治疗计划

基本信息

  • 批准号:
    490784-2015
  • 负责人:
  • 金额:
    $ 5.2万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Photodynamic Cancer Therapy (PDT) treats cancer by using a compound that, when activated by light, destroys cells. By limiting where tissue is exposed to light, one can destroy cancerous cells with a procedure that is less invasive than surgery, but with fewer side-effects than traditional chemotherapy or ionizing radiation therapy. This improves patient recovery times and greatly reduces cost compared to these therapies. While PDT is now widely used to treat skin cancers, where it is easy to control which tissue is exposed to light, it has been less used for interstitial cancers within the body. These cancers can be treated with PDT by administering the photosensitizer compound intraveneously, and activating the photosensitizer only near the tumour by light administered with fiber optic "light needles." However, determining where these light probes should be placed is difficult and it is not yet possible to determine in advance of treatment what the resulting light distribution and hence tissue destruction will be; this greatly limits PDT's usefulness for these more complex cancers.In this project we are developing a PDT "treatment planning" system which will both predict the light distribution that will result from a given probe placement, and automatically suggest an optimized probe placement that will yield the best treatment result. Given MRI data that describes both where the tumour is and the boundaries between the various tissues in a patient's body, this system will rapidly but very accurately simulate where light would go, given a set of light probes. This computation is normally very time-consuming, but we will use special computer chips called Field Programmable Gate Arrrays to accelerate the computation, making our computations approximately 60x more efficient. With such a fast computation, we can automatically determine the light distribution for many different possible probe locations, and return a suggested set of optimized probe locations to a clinician, along with the expected result on the tumour and surrounding tissue. Taken together, this system can make PDT therapy effective for complex cancers, making a promising new cancer therapy applicable to many more patients and improving their lives.
光动力学癌症疗法(PDT)通过使用一种化合物来治疗癌症,该化合物在被光激活时会破坏细胞。通过限制组织暴露于光的位置,人们可以用比手术侵入性更小的程序来破坏癌细胞,但副作用比传统的化疗或电离辐射疗法少。与这些疗法相比,这改善了患者的恢复时间并大大降低了成本。虽然PDT现在被广泛用于治疗皮肤癌,在那里它很容易控制哪些组织暴露在光下,但它很少用于体内的间质性癌症。这些癌症可以用PDT治疗,通过静脉内施用光敏剂化合物,并通过用光纤“光针”施用的光仅在肿瘤附近激活光敏剂。“然而,确定这些光探针应该放置在哪里是困难的,而且还不可能在治疗之前确定所产生的光分布以及因此造成的组织破坏;在这个项目中,我们正在开发一个PDT“治疗计划”系统,它既可以预测由给定的探针位置引起的光分布,并自动建议将产生最佳治疗结果的最佳探头放置。给定描述肿瘤位置和患者体内各种组织之间边界的MRI数据,该系统将快速但非常准确地模拟光在给定一组光探针的情况下的去向。这种计算通常非常耗时,但我们将使用称为现场可编程门阵列的特殊计算机芯片来加速计算,使我们的计算效率提高约60倍。通过这种快速计算,我们可以自动确定许多不同的可能探头位置的光分布,并将建议的一组优化探头位置连同肿瘤和周围组织的预期结果沿着返回给临床医生。总之,该系统可以使PDT疗法对复杂癌症有效,使一种有前途的新癌症疗法适用于更多患者并改善他们的生活。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Betz, Vaughn其他文献

Koios 2.0: Open-Source Deep Learning Benchmarks for FPGA Architecture and CAD Research
Koios 2.0:FPGA 架构和 CAD 研究的开源深度学习基准
Tensor Slices: FPGA Building Blocks For The Deep Learning Era
张量切片:深度学习时代的 FPGA 构建模块
Automatic interstitial photodynamic therapy planning via convex optimization
  • DOI:
    10.1364/boe.9.000898
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Yassine, Abdul-Amir;Kingsford, William;Betz, Vaughn
  • 通讯作者:
    Betz, Vaughn
Treatment plan evaluation for interstitial photodynamic therapy in a mouse model by Monte Carlo simulation with FullMonte
  • DOI:
    10.3389/fphy.2015.00006
  • 发表时间:
    2015-02-24
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Cassidy, Jeffrey;Betz, Vaughn;Lilge, Lothar
  • 通讯作者:
    Lilge, Lothar

Betz, Vaughn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Betz, Vaughn', 18)}}的其他基金

Exploiting and Enhancing Programmable Logic for Deep Learning and Datacenter Acceleration
利用和增强可编程逻辑进行深度学习和数据中心加速
  • 批准号:
    RGPIN-2022-04445
  • 财政年份:
    2022
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Discovery Grants Program - Individual
Toward More Energy-Efficient Datacenters with Enhanced Programmable Silicon
利用增强型可编程芯片打造更节能的数据中心
  • 批准号:
    RGPIN-2016-05537
  • 财政年份:
    2021
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Discovery Grants Program - Individual
Toward More Energy-Efficient Datacenters with Enhanced Programmable Silicon
利用增强型可编程芯片打造更节能的数据中心
  • 批准号:
    RGPIN-2016-05537
  • 财政年份:
    2020
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC/Intel Industrial Research Chair in Programmable Silicon
NSERC/英特尔可编程芯片工业研究主席
  • 批准号:
    428842-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Industrial Research Chairs
Toward More Energy-Efficient Datacenters with Enhanced Programmable Silicon
利用增强型可编程芯片打造更节能的数据中心
  • 批准号:
    RGPIN-2016-05537
  • 财政年份:
    2019
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC/Intel Industrial Research Chair in Programmable Silicon
NSERC/英特尔可编程芯片工业研究主席
  • 批准号:
    428842-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Industrial Research Chairs
Toward More Energy-Efficient Datacenters with Enhanced Programmable Silicon
利用增强型可编程芯片打造更节能的数据中心
  • 批准号:
    RGPIN-2016-05537
  • 财政年份:
    2018
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC/Intel Industrial Research Chair in Programmable Silicon
NSERC/英特尔可编程芯片工业研究主席
  • 批准号:
    428842-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Industrial Research Chairs
Toward More Energy-Efficient Datacenters with Enhanced Programmable Silicon
利用增强型可编程芯片打造更节能的数据中心
  • 批准号:
    RGPIN-2016-05537
  • 财政年份:
    2017
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC/Intel Industrial Research Chair in Programmable Silicon
NSERC/英特尔可编程芯片工业研究主席
  • 批准号:
    428842-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Industrial Research Chairs

相似国自然基金

非定常复杂流场的时空高精度高效率新格式的研究
  • 批准号:
    50376004
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
  • 批准号:
    24K16962
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The challenge of scaling methane fluxes in mangrove and mountain forests for an accurate methane budget
缩放红树林和山地森林甲烷通量以获得准确的甲烷预算的挑战
  • 批准号:
    24K01797
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
"Mimicking Human Head Sound Responses": Towards an Anatomically Accurate Head Prototype for Bone Conduction Crosstalk Cancellation Analysis with Humans
“模仿人类头部声音反应”:构建解剖学上准确的头部原型,用于人类骨传导串扰消除分析
  • 批准号:
    24K20786
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Research Grant
Developing an accurate non-Newtonian surface rheology model
开发精确的非牛顿表面流变模型
  • 批准号:
    EP/Y031644/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Research Grant
Accurate analysis of PTM enzymes with an mRNA display/deep learning platform
利用 mRNA 显示/深度学习平台准确分析 PTM 酶
  • 批准号:
    23K23485
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Framework for Fast, Accurate, and Explainable Computerized Adaptive Language Test
快速、准确且可解释的计算机化自适应语言测试框架
  • 批准号:
    24K20903
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2421137
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Continuing Grant
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2339868
  • 财政年份:
    2024
  • 资助金额:
    $ 5.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了