Precision medicine in breast cancer: from the computer to the clinic
乳腺癌精准医学:从计算机到诊所
基本信息
- 批准号:493626-2016
- 负责人:
- 金额:$ 18.07万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Health Research Projects
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Breast cancer is the second leading cause of cancer deaths in Canadian women, with 23,800 new cases and an estimateddeath rate of 21% in Canada in 2013. The advent of personalized medicine, which consists of using molecular data(mutations in cancer-related genes for instance) to tailor treatment to the individual patient, holds the promise to significantlyimprove cancer management in our modern society. However, while thousands of anticancer drugs have been developed,few of them were translated into efficient therapeutic strategies in breast cancer. The primary reason for such a discrepancyis the inability to predict patients response to a given therapeutic drug. There is therefore a dire need for developing newclinical tests that can help clinicians select the most beneficial therapy for each individual breast cancer patient.Predicting drug response is a challenging task due to the complex nature of breast cancer. New molecular features enablingprediction of therapy response, are usually discovered using either immortalized cancer cells or patients tumor biopsies.More recently, patient-derived xenografts (PDX) where human tumors are implanted in mice, also enabled to test drugs in amodel that recapitulate most of the features of real patients tumors. These preclinical models have their own weaknessesand strengths. To date these data have never been combined to develop accurate predictors of drug response. We proposein our project to use our recently published network-based method called SNF to efficiently combine cancer cell lines, PDXand patients tumors to build better predictors of drug response and test them in new patients samples collected withinongoing clinical trials. Upon successfully validation, we will closely work with our collaborators to implement our newcomputational tool in clinical routine with the aim to improve matching of patients to the clinical trials testing the drugs fromwhich they most benefit.
乳腺癌是加拿大妇女癌症死亡的第二大原因,2013年加拿大有23,800例新发病例,估计死亡率为21%。个性化医疗的出现,包括使用分子数据(例如癌症相关基因的突变)为个体患者量身定制治疗,有望显着改善我们现代社会的癌症管理。然而,尽管已经开发了数千种抗癌药物,但其中很少有转化为乳腺癌的有效治疗策略。这种差异的主要原因是无法预测患者对给定治疗药物的反应。因此,迫切需要开发新的临床测试,帮助临床医生为每位乳腺癌患者选择最有益的治疗方法。由于乳腺癌的复杂性,预测药物反应是一项具有挑战性的任务。新的分子特征使得能够预测治疗反应,通常使用永生化的癌细胞或患者的肿瘤活检来发现。最近,将人类肿瘤植入小鼠体内的患者来源的异种移植物(PDX)也能够在模型中测试药物,该模型再现了真实的患者肿瘤的大部分特征。这些临床前模型有其自身的优缺点。迄今为止,这些数据从未被结合起来,以开发药物反应的准确预测因子。在我们的项目中,我们建议使用我们最近发表的基于网络的方法SNF,有效地将联合收割机癌细胞系、PDX和患者肿瘤结合起来,以建立更好的药物反应预测因子,并在正在进行的临床试验中收集的新患者样本中进行测试。在成功验证后,我们将与我们的合作者密切合作,在临床常规中实施我们的新计算工具,目的是改善患者与测试他们最受益的药物的临床试验的匹配。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HaibeKains, Benjamin其他文献
HaibeKains, Benjamin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HaibeKains, Benjamin', 18)}}的其他基金
Development of a deep learning approach to predict noisy biological phenotypes
开发预测噪声生物表型的深度学习方法
- 批准号:
RGPIN-2021-02680 - 财政年份:2022
- 资助金额:
$ 18.07万 - 项目类别:
Discovery Grants Program - Individual
Development of a deep learning approach to predict noisy biological phenotypes
开发预测噪声生物表型的深度学习方法
- 批准号:
RGPIN-2021-02680 - 财政年份:2021
- 资助金额:
$ 18.07万 - 项目类别:
Discovery Grants Program - Individual
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2019
- 资助金额:
$ 18.07万 - 项目类别:
Discovery Grants Program - Individual
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2018
- 资助金额:
$ 18.07万 - 项目类别:
Discovery Grants Program - Individual
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2017
- 资助金额:
$ 18.07万 - 项目类别:
Discovery Grants Program - Individual
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2016
- 资助金额:
$ 18.07万 - 项目类别:
Discovery Grants Program - Individual
Precision medicine in breast cancer: from the computer to the clinic
乳腺癌精准医学:从计算机到诊所
- 批准号:
493626-2016 - 财政年份:2016
- 资助金额:
$ 18.07万 - 项目类别:
Collaborative Health Research Projects
Ensemble framework to infer large-scale causal gene regulatory networks from transcriptomic data
从转录组数据推断大规模因果基因调控网络的集成框架
- 批准号:
RGPIN-2015-03654 - 财政年份:2015
- 资助金额:
$ 18.07万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Chinese Journal of Integrative Medicine
- 批准号:81224004
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
基于新生血管显像研究MSC治疗缺血性脑血管病的转化医学关键问题
- 批准号:81171370
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
基于循证医学本体论的临床元数据语言研究
- 批准号:30972549
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
岭南瑶区几种瑶族抗肝炎植物药的化学成分及生物活性研究
- 批准号:20772047
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Disease subtyping guided by clinical phenotype for precision medicine
以临床表型为指导的疾病亚型精准医学
- 批准号:
10558889 - 财政年份:2023
- 资助金额:
$ 18.07万 - 项目类别:
The Causes and Consequences of the Diffusion of Precision Medicine: Evidence from Innovations in Breast Cancer Medicine
精准医学传播的原因和后果:来自乳腺癌医学创新的证据
- 批准号:
10616989 - 财政年份:2023
- 资助金额:
$ 18.07万 - 项目类别:
The use of cell-free DNA fragmentation patterns to enable precision medicine in breast cancer
利用无细胞 DNA 片段模式实现乳腺癌精准医疗
- 批准号:
491635 - 财政年份:2023
- 资助金额:
$ 18.07万 - 项目类别:
Miscellaneous Programs
A precision medicine basis for estrogen therapy for advanced breast cancer
晚期乳腺癌雌激素治疗的精准医学基础
- 批准号:
10930779 - 财政年份:2023
- 资助金额:
$ 18.07万 - 项目类别:
Matching genotypes with personalized therapies: Development of a decision support infrastructure to augment the value of precision medicine
将基因型与个性化治疗相匹配:开发决策支持基础设施以增强精准医疗的价值
- 批准号:
10645785 - 财政年份:2023
- 资助金额:
$ 18.07万 - 项目类别:
A feasibility trial of functional precision cancer medicine to inform treatment selection in metastatic breast cancer
功能性精准癌症医学的可行性试验,为转移性乳腺癌的治疗选择提供信息
- 批准号:
10584575 - 财政年份:2022
- 资助金额:
$ 18.07万 - 项目类别:
Micro-Organospheres Drug Screen to Lead Care (MODEL): a Precision Oncology Platform to Guide Breast Cancer Therapy
微有机球药物筛选引导护理 (MODEL):指导乳腺癌治疗的精准肿瘤学平台
- 批准号:
10383051 - 财政年份:2022
- 资助金额:
$ 18.07万 - 项目类别:
A feasibility trial of functional precision cancer medicine to inform treatment selection in metastatic breast cancer
功能性精准癌症医学的可行性试验,为转移性乳腺癌的治疗选择提供信息
- 批准号:
10436097 - 财政年份:2022
- 资助金额:
$ 18.07万 - 项目类别:
Development of a precision medicine platform for circadian based therapeutics in pancreatic cancer
开发基于昼夜节律的胰腺癌精准医学平台
- 批准号:
10707929 - 财政年份:2022
- 资助金额:
$ 18.07万 - 项目类别:
Leveraging high-risk populations for precision prevention: A novel approach for improving risk prediction for outcomes after a breast cancer diagnosis
利用高危人群进行精准预防:一种改善乳腺癌诊断后结果风险预测的新方法
- 批准号:
10673591 - 财政年份:2022
- 资助金额:
$ 18.07万 - 项目类别: