Complex Systems Approach for Studying Spatiotemporal Patterns of Disturbance as a Result of Climate Change
研究气候变化造成的扰动时空模式的复杂系统方法
基本信息
- 批准号:RGPIN-2016-05396
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Disturbance events have an important role in ecosystem regulation, and are acknowledged to influence species diversity, plant succession and regeneration, the distribution and abundance of animal populations and nutrient concentration in a range of ecosystem types. Historically, in forest ecosystems, natural disturbances such as wildfire and storms act as major regulating forces and, more recently, human disturbances such as land use changes, forest management and timber harvesting have had a marked impact on forest extent and structure, and on the distribution and abundance species. Whether natural or anthropogenic, disturbance has the capacity to affect biodiversity via a number of mechanisms, including its influence on environmental heterogeneity. Although, forest ecosystems are constantly shaped by natural disturbances such as fires, insect infestations, diseases, windfall, among others, recent and more rapid climate changes have modified these disturbance regimes as well as the complex dynamics between forest ecosystems and their biodiversity. Disturbance regimes include disturbances at many intensities and scales, from the death of a single dominant tree to a catastrophic forest fire or insect infestation, all of which are embedded within climatic cycles that may span decades to millions of years. The disturbance regime of a particular forest usually consists of a complex mixture of infrequent, large-scale events and more frequent, small-scale events. A disturbance regime cannot be understood in isolation, but rather it is tied to the systems to which it is linked an ultimately to events within surrounding landscapes, the region, and the globe. Understanding the processes that drive changes to the landscape patterns and ecological complexity over time is critical for ensuring ecological, social and economic stability in many regions in the country. As complexity is inherent in ecological and anthropogenic processes, this research program aims to advance GIScience methods by developing complex systems modelling approaches that will be applicable in ecology to further our understanding about spatiotemporal dynamics driving changes in the Canadian forests and their biodiversity. This research agenda will integrate multiple statistical and mathematical methods to describe geographic patterns, as well as computational modelling approaches to simulate the effects of ecological and environmental change on forest ecosystems and their biodiversity. Modelling approaches such as cellular automata and agent-based combined with computational intelligence may hold the key to a better understanding of how disturbance regimes and their spatial patterns will vary in response to climate change. This knowledge is urgently needed in Canada to promote awareness of possible alterations in ecosystem function and services to support a range of policy and planning considerations.
干扰事件在生态系统调节中具有重要作用,并被认为影响一系列生态系统类型中的物种多样性、植物演替和再生、动物种群的分布和丰度以及养分浓度。从历史上看,在森林生态系统中,野火和风暴等自然干扰是主要的调节力量,最近,土地使用变化、森林管理和木材采伐等人为干扰对森林的范围和结构以及物种的分布和丰度产生了显著影响。无论是自然的还是人为的,干扰都有能力通过一些机制影响生物多样性,包括对环境异质性的影响。虽然森林生态系统不断受到火灾、虫害、疾病、意外收获等自然干扰的影响,但最近更迅速的气候变化改变了这些干扰机制以及森林生态系统与其生物多样性之间的复杂动态。干扰状态包括许多强度和规模的干扰,从一棵主要树木的死亡到灾难性的森林火灾或虫害,所有这些都嵌入在可能长达数十年至数百万年的气候周期中。一个特定的森林的干扰制度通常由一个复杂的混合物罕见的,大规模的事件和更频繁的,小规模的事件。不能孤立地理解扰动机制,而是将其与系统联系在一起,最终与周围景观、区域和地球仪内的事件联系在一起。了解驱动景观格局和生态复杂性随时间变化的过程对于确保该国许多地区的生态,社会和经济稳定至关重要。由于复杂性是固有的生态和人为过程中,该研究计划的目的是通过开发复杂的系统建模方法,将适用于生态学,以促进我们对时空动态驱动加拿大森林及其生物多样性的变化的理解GIScience方法。这一研究议程将综合多种统计和数学方法来描述地理格局,并采用计算建模方法来模拟生态和环境变化对森林生态系统及其生物多样性的影响。诸如元胞自动机和基于代理的建模方法与计算智能相结合,可能是更好地理解扰动机制及其空间模式如何响应气候变化的关键。加拿大迫切需要这方面的知识,以提高对生态系统功能和服务可能改变的认识,支持一系列政策和规划考虑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Perez, Liliana其他文献
Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α
- DOI:
10.1111/imm.12723 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:6.4
- 作者:
Ocana, Gail J.;Perez, Liliana;Blum, Janice S. - 通讯作者:
Blum, Janice S.
BorealFireSim: A GIS-based cellular automata model of wildfires for the boreal forest of Quebec in a climate change paradigm
- DOI:
10.1016/j.ecoinf.2015.12.006 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:5.1
- 作者:
Gaudreau, Jonathan;Perez, Liliana;Drapeau, Pierre - 通讯作者:
Drapeau, Pierre
ABWiSE v1.0: toward an agent-based approach to simulating wildfire spread
- DOI:
10.5194/nhess-21-3141-2021 - 发表时间:
2021-10-19 - 期刊:
- 影响因子:4.6
- 作者:
Katan, Jeffrey;Perez, Liliana - 通讯作者:
Perez, Liliana
A geospatial agent-based model of the spatial urban dynamics of immigrant population: A study of the island of Montreal, Canada
- DOI:
10.1371/journal.pone.0219188 - 发表时间:
2019-07-24 - 期刊:
- 影响因子:3.7
- 作者:
Perez, Liliana;Dragicevic, Suzana;Gaudreau, Jonathan - 通讯作者:
Gaudreau, Jonathan
Inhibitory role of TACE/ADAM17 cytotail in protein ectodomain shedding.
- DOI:
10.4331/wjbc.v2.i11.246 - 发表时间:
2011-11-26 - 期刊:
- 影响因子:0
- 作者:
Li, Xiaojin;Perez, Liliana;Fan, Huizhou - 通讯作者:
Fan, Huizhou
Perez, Liliana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Perez, Liliana', 18)}}的其他基金
Complex Systems Approach for Studying Spatiotemporal Patterns of Disturbance as a Result of Climate Change
研究气候变化造成的扰动时空模式的复杂系统方法
- 批准号:
RGPIN-2016-05396 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Complex Systems Approach for Studying Spatiotemporal Patterns of Disturbance as a Result of Climate Change
研究气候变化造成的扰动时空模式的复杂系统方法
- 批准号:
RGPIN-2016-05396 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Complex Systems Approach for Studying Spatiotemporal Patterns of Disturbance as a Result of Climate Change
研究气候变化造成的扰动时空模式的复杂系统方法
- 批准号:
RGPIN-2016-05396 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Complex Systems Approach for Studying Spatiotemporal Patterns of Disturbance as a Result of Climate Change
研究气候变化造成的扰动时空模式的复杂系统方法
- 批准号:
RGPIN-2016-05396 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Complex Systems Approach for Studying Spatiotemporal Patterns of Disturbance as a Result of Climate Change
研究气候变化造成的扰动时空模式的复杂系统方法
- 批准号:
RGPIN-2016-05396 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
The process of self-regulated learning in English language learning from the complex dynamic systems approach
从复杂动态系统方法看英语学习中的自我调节学习过程
- 批准号:
23K12243 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: Understanding complex wind-driven wildfire propagation patterns with a dynamical systems approach
EAGER:通过动力系统方法了解复杂的风驱动野火传播模式
- 批准号:
2330212 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
A complex systems approach towards REsilient and CONNECTED vulnerable European communities in times of change
在变革时期采用复杂的系统方法实现弹性和互联的脆弱欧洲社区
- 批准号:
10091604 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
EU-Funded
Systems biology approach to elucidate complex metabolic dependencies in the evolution of antibiotic resistance
系统生物学方法阐明抗生素耐药性进化中复杂的代谢依赖性
- 批准号:
10659296 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Elucidation of spatiotemporal dynamics in combustion oscillations by complex systems science and statistical learning approach
通过复杂系统科学和统计学习方法阐明燃烧振荡的时空动力学
- 批准号:
22H01420 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Complex Systems Approach for Studying Spatiotemporal Patterns of Disturbance as a Result of Climate Change
研究气候变化造成的扰动时空模式的复杂系统方法
- 批准号:
RGPIN-2016-05396 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
A Complex Systems Approach to Studying Circadian Regulation of T Cell Signaling
研究 T 细胞信号传导昼夜节律调节的复杂系统方法
- 批准号:
565609-2021 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's