Simulating and Simplifying the Physicochemical Complexity of Gas-Aerosol Systems to Promote Development of the Next Generation of Atmospheric 3-D Models

模拟和简化气体气溶胶系统的物理化学复杂性,促进下一代大气 3D 模型的开发

基本信息

  • 批准号:
    RGPIN-2014-04315
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Aerosol particles are important constituents of the atmosphere affecting clouds, air quality and Earth's climate. The amounts and distribution of these tiny particles in the surface layers of the atmosphere are important indicators of air quality, often reported in terms of particulate matter mass concentrations (PM10, PM2.5) alongside with ozone and nitrous oxide concentrations. Fine and ultrafine particles can easily enter the lungs and may affect adversely the health of humans. Aerosol particles play a crucial role in the formation of clouds and influence the microphysical properties of liquid water and ice clouds. The recent, comprehensive fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) highlights that aerosols remain poorly constrained climate agents of considerable importance: “There is high confidence that aerosols and their interactions with clouds have offset a substantial portion of global mean forcing from well-mixed greenhouse gases. They continue to contribute the largest uncertainty to the total radiative forcing (RF) estimate.”Observed levels of aerosols globally show that organic compounds typically contribute 30% to 80% of the aerosol mass in the troposphere. The major part of this organic aerosol fraction is so-called secondary organic aerosol (SOA) formed from the oxidation of volatile organic compounds and subsequent gas-particle partitioning. It is of central importance for actions targeting the improvement of urban and regional air quality, as well as the critical assessment of climate sensitivity, to understand how chemical reactions and partitioning of volatile organic and inorganic species influences mass concentrations, chemical composition, and size distribution of atmospheric aerosols. Current atmospheric 3-D models implement such physicochemical processes by means of highly simplified schemes only. Most of the 3-D models substantially underpredict observed aerosol levels, constituting one of the main uncertainties in current assessments of air quality and global climate.It is a long-term goal of our research program to develop and utilize methods to translate process-level knowledge from laboratory aerosol experiments, field studies, theory, and box models into practical and justified process parameterizations for use in 3-D chemical transport and chemistry-climate models. Accordingly, our short-term objectives for the next five years include the development of a novel physicochemical modeling framework enabling simplified simulations of aerosol formation and chemical evolution and the evaluation and design of smog chamber experiments. The fundamental insights gained from a box model comprising key physicochemical processes of organic aerosol formation and chemical aging will provide a sound basis from which to assess the feasibility of different levels of simplifications, such as the number and classes of organic surrogate compounds required for process parameterizations in 3-D models. The influence of relative humidity on gas-particle partitioning is one of several questions we propose to study for a wide variety of secondary organic aerosol types. Model simulations in turn will allow us to establish a series of constraints and recommendations for the development of simplified yet improved parameterizations for applications in 3-D models, which largely depend on computationally efficient schemes. New parameterizations will be implemented and tested in an atmospheric chemical transport model.The proposed research offers excellent opportunities for the training of graduate students at McGill University. Our research and training efforts will be supported by mutually beneficial scientific collaborations with leading research groups from Europe and North America.
气溶胶颗粒是大气层的重要组成部分,影响云、空气质量和地球气候。这些微小颗粒在大气表层的数量和分布是空气质量的重要指标,通常以颗粒物质量浓度(PM10,PM2.5)以及臭氧和一氧化二氮浓度的形式报告。细小和超细颗粒物很容易进入肺部,可能对人体健康产生不利影响。气溶胶粒子在云的形成中起着至关重要的作用,并影响液态水和冰云的微物理性质。政府间气候变化专门委员会(IPCC)最近的第五次全面评估报告(AR 5)强调,气溶胶仍然是相当重要的气候因子,受到很大的限制:“有很高的信心,气溶胶及其与云的相互作用抵消了很大一部分来自混合温室气体的全球平均强迫。它们继续对总辐射强迫(RF)估计贡献最大的不确定性。全球观测到的气溶胶水平表明,有机化合物通常占对流层气溶胶质量的30%至80%。这种有机气溶胶部分的主要部分是所谓的二次有机气溶胶(SOA),其由挥发性有机化合物的氧化和随后的气体-颗粒分配形成。对于旨在改善城市和区域空气质量的行动以及对气候敏感性的关键评估来说,了解化学反应和挥发性有机和无机物质的分配如何影响大气气溶胶的质量浓度、化学成分和尺寸分布至关重要。目前的大气3-D模式只通过高度简化的方案来实现这样的物理化学过程。大多数三维模式大大低估了观测到的气溶胶水平,构成了当前空气质量和全球气候评估的主要不确定性之一。我们的研究计划的长期目标是开发和利用方法,从实验室气溶胶实验,实地研究,理论,和箱模型转化为实际和合理的过程参数化,用于三维化学传输和化学气候模式。因此,我们未来五年的短期目标包括开发一种新的物理化学建模框架,简化气溶胶形成和化学演变的模拟,以及烟雾室实验的评估和设计。从一个盒子模型,包括有机气溶胶形成和化学老化的关键物理化学过程中获得的基本见解将提供一个健全的基础,从其中评估不同层次的简化的可行性,如在3-D模型中的过程参数化所需的有机替代化合物的数量和类别。相对湿度对气-粒分配的影响是我们提出要研究的多种二次有机气溶胶类型的几个问题之一。模型模拟反过来将使我们能够建立一系列的限制和建议,简化但改进的参数化的应用程序在3-D模型,这在很大程度上取决于计算效率的计划。新的参数化方法将在一个大气化学传输模式中实施和测试,该研究为麦吉尔大学研究生的培训提供了极好的机会。我们的研究和培训工作将得到与欧洲和北美领先研究小组的互利科学合作的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zuend, Andreas其他文献

Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols
  • DOI:
    10.5194/acp-16-12767-2016
  • 发表时间:
    2016-10-13
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Hodas, Natasha;Zuend, Andreas;Seinfeld, John H.
  • 通讯作者:
    Seinfeld, John H.
Surface tension prevails over solute effect in organic-influenced cloud droplet activation
  • DOI:
    10.1038/nature22806
  • 发表时间:
    2017-06-29
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Ovadnevaite, Jurgita;Zuend, Andreas;O'Dowd, Colin
  • 通讯作者:
    O'Dowd, Colin
The acidity of atmospheric particles and clouds
  • DOI:
    10.5194/acp-20-4809-2020
  • 发表时间:
    2020-04-24
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Pye, Havala O. T.;Nenes, Athanasios;Zuend, Andreas
  • 通讯作者:
    Zuend, Andreas
A predictive group-contribution model for the viscosity of aqueous organic aerosol
  • DOI:
    10.5194/acp-20-2987-2020
  • 发表时间:
    2020-03-12
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Gervasi, Natalie R.;Topping, David O.;Zuend, Andreas
  • 通讯作者:
    Zuend, Andreas
Comparison of Phase States of PM(2.5) over Megacities, Seoul and Beijing, and Their Implications on Particle Size Distribution.
  • DOI:
    10.1021/acs.est.2c06377
  • 发表时间:
    2022-12-20
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Song, Mijung;Jeong, Rani;Kim, Daeun;Qiu, Yanting;Meng, Xiangxinyue;Wu, Zhijun;Zuend, Andreas;Ha, Yoonkyeong;Kim, Changhyuk;Kim, Haeri;Gaikwad, Sanjit;Jang, Kyoung-Soon;Lee, Ji Yi;Ahn, Joonyoung
  • 通讯作者:
    Ahn, Joonyoung

Zuend, Andreas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zuend, Andreas', 18)}}的其他基金

Quantifying the interplay of particle size, composition and phase separation: development of size-dependent aerosol thermodynamics and dynamics models for improved simulations of air quality and aerosol-cloud interactions
量化颗粒尺寸、成分和相分离的相互作用:开发尺寸相关的气溶胶热力学和动力学模型,以改进空气质量和气溶胶-云相互作用的模拟
  • 批准号:
    RGPIN-2021-02688
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Quantifying the interplay of particle size, composition and phase separation: development of size-dependent aerosol thermodynamics and dynamics models for improved simulations of air quality and aerosol-cloud interactions
量化颗粒尺寸、成分和相分离的相互作用:开发尺寸相关的气溶胶热力学和动力学模型,以改进空气质量和气溶胶-云相互作用的模拟
  • 批准号:
    RGPIN-2021-02688
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Simulating and Simplifying the Physicochemical Complexity of Gas-Aerosol Systems to Promote Development of the Next Generation of Atmospheric 3-D Models
模拟和简化气体气溶胶系统的物理化学复杂性,促进下一代大气 3D 模型的开发
  • 批准号:
    RGPIN-2014-04315
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Simulating and Simplifying the Physicochemical Complexity of Gas-Aerosol Systems to Promote Development of the Next Generation of Atmospheric 3-D Models
模拟和简化气体气溶胶系统的物理化学复杂性,促进下一代大气 3D 模型的开发
  • 批准号:
    RGPIN-2014-04315
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Simulating and Simplifying the Physicochemical Complexity of Gas-Aerosol Systems to Promote Development of the Next Generation of Atmospheric 3-D Models
模拟和简化气体气溶胶系统的物理化学复杂性,促进下一代大气 3D 模型的开发
  • 批准号:
    RGPIN-2014-04315
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Simulating and Simplifying the Physicochemical Complexity of Gas-Aerosol Systems to Promote Development of the Next Generation of Atmospheric 3-D Models
模拟和简化气体气溶胶系统的物理化学复杂性,促进下一代大气 3D 模型的开发
  • 批准号:
    RGPIN-2014-04315
  • 财政年份:
    2015
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Simulating and Simplifying the Physicochemical Complexity of Gas-Aerosol Systems to Promote Development of the Next Generation of Atmospheric 3-D Models
模拟和简化气体气溶胶系统的物理化学复杂性,促进下一代大气 3D 模型的开发
  • 批准号:
    RGPIN-2014-04315
  • 财政年份:
    2014
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

III: Small: Query-By-Sketch: Simplifying Video Clip Retrieval Through A Visual Query Paradigm
III:小:按草图查询:通过可视化查询范式简化视频剪辑检索
  • 批准号:
    2335881
  • 财政年份:
    2024
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Simplifying End-to-End Verification of High-Performance Distributed Systems
合作研究:FMitF:第一轨:简化高性能分布式系统的端到端验证
  • 批准号:
    2318954
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track I: Simplifying End-to-End Verification of High-Performance Distributed Systems
合作研究:FMitF:第一轨:简化高性能分布式系统的端到端验证
  • 批准号:
    2318953
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Simplifying quantum computing: from theory to applications
简化量子计算:从理论到应用
  • 批准号:
    EP/W028301/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Fellowship
SBIR Phase II: Simplifying the use of recycled plastics in film extrusion
SBIR 第二阶段:简化薄膜挤出中再生塑料的使用
  • 批准号:
    2212917
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Cooperative Agreement
Elements: Simplifying Compiled Python Packaging in the Sciences
元素:简化科学领域的已编译 Python 打包
  • 批准号:
    2209877
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
Simplifying Processes in the Offshore Decommissioning sector: Reducing P&A costs by 30% and emissions by 50%
简化海上退役部门的流程:减少 P
  • 批准号:
    10035208
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Collaborative R&D
Simplifying and commercialising a portion controlled container and app to assist people looking to attempting to limit snack or alcohol intake
简化并商业化份量控制容器和应用程序,以帮助人们尝试限制零食或酒精摄入量
  • 批准号:
    10046597
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant for R&D
Simplifying complexity and diversity of circadian clocks
简化生物钟的复杂性和多样性
  • 批准号:
    22H04984
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Simplifying health and wellness by connecting multiple data points from smart devices and turning them into insights
通过连接来自智能设备的多个数据点并将其转化为见解来简化健康和保健
  • 批准号:
    10046078
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Grant for R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了