Numerical and Geometric Algorithms for Virtual Practical Effects
用于虚拟实际效果的数值和几何算法
基本信息
- 批准号:298161-2013
- 负责人:
- 金额:$ 4.52万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In our 2010 Science article, we coined the term 'virtual practical effects' to describe an emerging methodology for technical artists to create digital effects. Supported by physics-based simulation technology, artists can use their knowledge of (and natural intuition for) the real world to virtually build 'physical' mechanisms that create the desired effects. Virtual practical effects has already shown much greater productivity compared to laboriously modelling every phenomenon at a lower level. For example, synchronized crashing ocean waves in 'Avatar' were produced by virtual wave generators modelled after the real thing, running in a physical simulation of the water we wrote. This approach is still in its infancy: my research program tackles the algorithmic challenges still standing in the way of a visual effects revolution. Part of the research will be dedicated to core low level algorithms, such as efficiently solving the linear and nonlinear systems arising in (multi-)physics simulations, or accurately and robustly tracking a detailed surface as it evolves through time. The other part of the research is concerned with more efficient or more capable numerical models of physical phenomena, like deep ocean waves interacting with boats, solid objects fracturing, or the deformation of thin film bubbles. The visual effects industry is important and rapidly growing within Canada, and Canada already leads the world in developing 3D animation software (e.g. Maya, Houdini). This program will build on my past research success in these industries, fuelling further growth. In the longer term, it also represents an important step in bringing visual effects capability to anyone with artistic talent and a story to tell - but not the time or inclination to wrestle with low-level technical effects work. Ultimately, the same goals of efficient fidelity to the real world and robustness in the hands of non-numerically-inclined users apply to much broader problems, in particular bringing numerical simulation prototyping to the do-it-yourself/maker revolution.
在我们2010年的科学文章中,我们创造了“虚拟实际效果”一词来描述技术艺术家创造数字效果的新兴方法。在基于物理的模拟技术的支持下,艺术家可以利用他们对现实世界的知识(和自然直觉)来虚拟地构建创造所需效果的“物理”机制。与在较低水平上费力地模拟每一种现象相比,虚拟实际效果已经显示出更大的生产力。例如,《阿凡达》中的同步海浪是由模拟真实海浪的虚拟海浪发生器产生的,在我们编写的物理模拟水中运行。这种方法仍处于起步阶段:我的研究项目解决了仍然阻碍视觉效果革命的算法挑战。部分研究将致力于核心低级算法,例如有效地解决(多)物理模拟中出现的线性和非线性系统,或者准确而稳健地跟踪详细的表面,因为它随着时间的推移而演变。研究的另一部分涉及更有效或更有能力的物理现象的数值模型,如深海波浪与船只的相互作用,固体物体的破裂,或薄膜气泡的变形。视觉特效产业在加拿大非常重要且发展迅速,加拿大在开发3D动画软件(例如Maya, Houdini)方面已经领先世界。这个项目将以我过去在这些行业的成功研究为基础,推动进一步的发展。从长远来看,它也代表了重要的一步,将视觉效果的能力带给任何有艺术天赋和故事要讲的人——但不是时间或倾向于与低水平的技术效果工作作斗争。最终,在非数字倾向的用户手中,有效地忠实于现实世界和健壮性的目标同样适用于更广泛的问题,特别是将数值模拟原型带到自己动手/制造革命中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bridson, Robert其他文献
Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes
- DOI:
10.1109/tvcg.2013.97 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:5.2
- 作者:
Misztal, Marek Krzysztof;Erleben, Kenny;Bridson, Robert - 通讯作者:
Bridson, Robert
Efficient Geometrically Exact Continuous Collision Detection
- DOI:
10.1145/2185520.2185592 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:6.2
- 作者:
Brochu, Tyson;Edwards, Essex;Bridson, Robert - 通讯作者:
Bridson, Robert
Ghost SPH for Animating Water
- DOI:
10.1145/2185520.2185557 - 发表时间:
2012-07-01 - 期刊:
- 影响因子:6.2
- 作者:
Schechter, Hagit;Bridson, Robert - 通讯作者:
Bridson, Robert
Bridson, Robert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bridson, Robert', 18)}}的其他基金
Numerical and Geometric Algorithms for Virtual Practical Effects
用于虚拟实际效果的数值和几何算法
- 批准号:
298161-2013 - 财政年份:2016
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Numerical and Geometric Algorithms for Virtual Practical Effects
用于虚拟实际效果的数值和几何算法
- 批准号:
298161-2013 - 财政年份:2015
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Numerical and Geometric Algorithms for Virtual Practical Effects
用于虚拟实际效果的数值和几何算法
- 批准号:
446339-2013 - 财政年份:2015
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Numerical and Geometric Algorithms for Virtual Practical Effects
用于虚拟实际效果的数值和几何算法
- 批准号:
298161-2013 - 财政年份:2014
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Numerical and Geometric Algorithms for Virtual Practical Effects
用于虚拟实际效果的数值和几何算法
- 批准号:
446339-2013 - 财政年份:2014
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Numerical and Geometric Algorithms for Virtual Practical Effects
用于虚拟实际效果的数值和几何算法
- 批准号:
298161-2013 - 财政年份:2013
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Numerical and Geometric Algorithms for Virtual Practical Effects
用于虚拟实际效果的数值和几何算法
- 批准号:
446339-2013 - 财政年份:2013
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Numerical methods for computational physics in animation
动画中计算物理的数值方法
- 批准号:
298161-2008 - 财政年份:2012
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for computational physics in animation
动画中计算物理的数值方法
- 批准号:
298161-2008 - 财政年份:2011
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for computational physics in animation
动画中计算物理的数值方法
- 批准号:
298161-2008 - 财政年份:2010
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
ATD: Algorithms and Geometric Methods for Community and Anomaly Detection and Robust Learning in Complex Networks
ATD:复杂网络中社区和异常检测以及鲁棒学习的算法和几何方法
- 批准号:
2220271 - 财政年份:2023
- 资助金额:
$ 4.52万 - 项目类别:
Standard Grant
CAREER: Geometric Techniques for Topological Graph Algorithms
职业:拓扑图算法的几何技术
- 批准号:
2237288 - 财政年份:2023
- 资助金额:
$ 4.52万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223871 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms for Geometric Graphs
合作研究:AF:媒介:几何图算法
- 批准号:
2212130 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Continuing Grant
Geometric structures guided learning model and algorithms for bulk RNAseq data analysis
用于批量 RNAseq 数据分析的几何结构引导学习模型和算法
- 批准号:
10592460 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Algorithms in computational geometry and geometric graphs
计算几何和几何图的算法
- 批准号:
RGPIN-2020-03959 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: Algorithms for Geometric Shortest Paths and Related Problems
AF:小:几何最短路径算法及相关问题
- 批准号:
2300356 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223870 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Standard Grant
Analyzing Geometric Partitioning Algorithms for Tabular Data Visualization
分析表格数据可视化的几何分区算法
- 批准号:
575482-2022 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: AF: Medium: Algorithms for Geometric Graphs
合作研究:AF:媒介:几何图算法
- 批准号:
2212129 - 财政年份:2022
- 资助金额:
$ 4.52万 - 项目类别:
Continuing Grant














{{item.name}}会员




