The Nexus of Analysis and Number Theory

分析与数论的联系

基本信息

  • 批准号:
    RGPIN-2014-05365
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

SUMMARY OF PROPOSALThe questions of this proposal live at the nexus of classical analysis and number theory. The tools are analytic, probabilistic, combinatorial and number theoretic with a central computational flavour. The computational techniques are sophisticated, require significant computational resources (hundreds of hours of grid computing in some instances) and the algorithms themselves are sometimes the central issue as with the Merit Factor Problem.The problems which are at the heart of this proposal are often “old plums” in number theory or combinatorics. They have been open for many years. They are also all related, or at least potentially related. Despite their clear difficulty, in each case partial progress has been made and more appears possible. For much more detail, see [Borwein 2002]. The papers of the attached CCV almost all relate to at least one of these problems.Much exciting recent progress in this general area, particularly due to Green and Tao, suggests that seriously attacking some of the intractabilities of these problems may be possible. Likewise computational advances may allow us to make reasonable conjectures. The following two problems will be central to our proposal, among others. CHOWLA’S COSINE PROBLEM:Ben Green writes in a recent Math Review: This paper addresses one of the reviewer’s favourite questions, which has been referred to as “Chowla’s cosine problem”:This involves finding the negative of the minimum of a sum of n cosines over a period. There have been various partial results, but currently, there is an enormous gap between what is provable and what is conjectured in this intriguing problem, and indeed, it isn’t clear what the right answer should be.PADÉ APPROXIMATION OF THE ZETA FUNCTIONExplore the location of the zeros and poles of the Padé approximations to the (suitably normalized) Riemann Zeta function. It seems clear that Szegö-like curves exist. This is somewhat surprising and it isn’t clear what these curves are. The patterns are striking and the computations are difficult. Little is possible to prove, but much is suggested. This, of course, is intimate to the Riemann hypothesis.These problems are of central interest and importance in number theory. Number theory is of course one the strongest areas of mathematics in Canada.
这个建议的问题是经典分析和数论的联系。这些工具是分析的,概率的,组合的和数论的,具有中心计算的味道。计算技术是复杂的,需要大量的计算资源(在某些情况下需要数百小时的网格计算),算法本身有时是价值因子问题的中心问题。这个提议的核心问题通常是数论或组合学中的“老李子”。他们已经开了很多年了。它们也都是相关的,或者至少是潜在相关的。尽管存在明显的困难,但在每一种情况下都取得了部分进展,而且似乎可能取得更多进展。要了解更多细节,请参见[Borwein 2002]。所附CCV的论文几乎都涉及到这些问题中的至少一个。最近在这一领域取得了许多令人兴奋的进展,特别是由于格林和陶的努力,表明认真解决这些问题的一些棘手问题是可能的。同样,计算技术的进步可能使我们能够做出合理的推测。除其他外,以下两个问题将是我们建议的核心。CHOWLA的余弦问题:本·格林在最近的一篇数学评论中写道:这篇论文解决了审稿人最喜欢的问题之一,被称为“CHOWLA的余弦问题”:这涉及到在一段时间内找到n个余弦和的最小值的负数。已经有了各种各样的部分结果,但目前,在这个有趣的问题上,在可证明的和推测的之间存在着巨大的差距,事实上,正确的答案应该是什么也不清楚。PADÉ ZETA函数的近似探索(适当归一化)黎曼ZETA函数的pad<s:1>近似的零点和极点的位置。很明显Szegö-like曲线是存在的。这有点令人惊讶,这些曲线是什么还不清楚。这些模式是惊人的,计算是困难的。可以证明的很少,但可以提出很多建议。当然,这与黎曼假设密切相关。这些问题在数论中具有中心意义和重要性。数论当然是加拿大最强大的数学领域之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Borwein, Peter其他文献

Borwein, Peter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Borwein, Peter', 18)}}的其他基金

The Nexus of Analysis and Number Theory
分析与数论的联系
  • 批准号:
    RGPIN-2014-05365
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
The Nexus of Analysis and Number Theory
分析与数论的联系
  • 批准号:
    RGPIN-2014-05365
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
The Nexus of Analysis and Number Theory
分析与数论的联系
  • 批准号:
    RGPIN-2014-05365
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
The Nexus of Analysis and Number Theory
分析与数论的联系
  • 批准号:
    RGPIN-2014-05365
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
At the interface of analysis and number theory
分析与数论的接口
  • 批准号:
    152758-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
At the interface of analysis and number theory
分析与数论的接口
  • 批准号:
    152758-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
At the interface of analysis and number theory
在分析和数论的界面
  • 批准号:
    152758-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
At the interface of analysis and number theory
在分析和数论的界面
  • 批准号:
    152758-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
At the interface of analysis and number theory
在分析和数论的界面
  • 批准号:
    152758-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Computational number theory and analysis
计算数论与分析
  • 批准号:
    152758-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
  • 批准号:
    2334874
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Structural and copy number variation analysis using adaptive long read sequencing
使用自适应长读测序进行结构和拷贝数变异分析
  • 批准号:
    2886714
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
Visualization of Energy Metabolism and Analysis of Fetal Kidney Reveals Mechanism of Nephron Number Determination
能量代谢可视化和胎儿肾脏分析揭示肾单位数量测定机制
  • 批准号:
    23K18288
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Renal physiological function and histological analysis using genetically engineered low nephron number mice
基因工程低肾单位数小鼠的肾脏生理功能和组织学分析
  • 批准号:
    23K07725
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RII Track-4:NSF: From Analytic Number Theory to Harmonic Analysis
RII Track-4:NSF:从解析数论到调和分析
  • 批准号:
    2229278
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
CAREER: Building bridges between number theory and harmonic analysis
职业:在数论和调和分析之间架起桥梁
  • 批准号:
    2237937
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Questions at the Interface of Analysis and Number Theory
分析与数论的交叉问题
  • 批准号:
    2231990
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Analysis for the pollen number controlling pathway in wheat
小麦花粉数控制途径分析
  • 批准号:
    22K19172
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
P-adic functional analysis and application to number theory
P-adic 泛函分析及其在数论中的应用
  • 批准号:
    575024-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    University Undergraduate Student Research Awards
Why and how did the endangered/threatened species increase in number after the Great East Japan Earthquake and the associated Tsunami? : an analysis for semi-terrestrial crabs.
东日本大地震和相关海啸之后,濒危/受威胁物种的数量为何以及如何增加?
  • 批准号:
    22K06406
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了