Operator algebras and operator theory
算子代数和算子理论
基本信息
- 批准号:3488-2013
- 负责人:
- 金额:$ 2.77万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Operator theory is the study of linear transformations (operators) on infinite dimensional Euclidean space. Operators and the algebras that they generate can be utilized to model a wide variety of phenomena, including dynamical systems, quantum mechanics, and data compression. We expect that our research will provide significant new insights in the field. I am interested in the multivariable operator theory. This involves invariants arising from geometry and algebra. The analysis imposed by our setting adds additional structure that allows several different directions of attack. We have studied algebras which are universal models for commuting contractions with relations. Ideas from algebraic geometry and analytic functions of several variables provide a template and inspiration to find appropriate analogues in the operator setting. Dilation theory attempts to understand general structures as pieces of a canonical model. It is a powerful tool that we have helped develop, and seek to push further. In particular, semicrossed products are operator algebras which encode a semigroup action. Dilation theory sheds considerable light on their structure, providing invariants to distinguish different systems. Our recent work has provided general properties of operator algebras which allow a good understanding of their semicrossed products. We seek to develop this further. A second project considers Arveson's notions of boundary representation and hyper-rigidity. We seek to extend the existence and applicability of these notions. In operator theory, one important structural feature is an invariant subspace. While it is unknown whether every operator has one, recently it has been shown that every operator has a subspace which is invariant up to a 1-dimensional perturbation. It is known that every operator has a small compact perturbation which has a reducing subspace. We seek to determine whether a finite rank perturbation will suffice.
算子理论是研究无限维欧氏空间上的线性变换(算子)的理论。运算符及其生成的代数可用于对各种现象进行建模,包括动力系统、量子力学和数据压缩。我们期待我们的研究将在该领域提供重要的新见解。我对多变量算子理论很感兴趣。这涉及到几何和代数中的不变量。我们设置的分析增加了额外的结构,允许几种不同的攻击方向。我们研究了代数,它们是具有关系的交换压缩的普遍模型。来自代数几何和多变量解析函数的思想为在运算符设置中找到适当的相似项提供了模板和灵感。膨胀理论试图将一般结构理解为规范模型的一部分。这是我们帮助开发的一个强大的工具,并寻求进一步推动。具体地说,半微积是编码半群作用的算子代数。膨胀理论揭示了它们的结构,提供了区分不同系统的不变量。我们最近的工作提供了算子代数的一般性质,这使得我们可以很好地理解它们的半微观乘积。我们寻求进一步发展这一点。第二个项目考虑了Arveson的边界表示和超刚性的概念。我们试图扩大这些概念的存在和适用范围。在算子理论中,一个重要的结构特征是不变子空间。虽然还不知道是否每个算子都有一个算子,但最近已经证明每个算子都有一个子空间,这个子空间直到一维扰动都是不变的。众所周知,每个算子都有一个小的紧扰动,它有一个约化子空间。我们试图确定有限秩扰动是否就足够了。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Davidson, Kenneth其他文献
Vapor pressure deficit predicts epiphyte abundance across an elevational gradient in a tropical montane region
- DOI:
10.3732/ajb.1700247 - 发表时间:
2017-12-01 - 期刊:
- 影响因子:3
- 作者:
Gotsch, Sybil G.;Davidson, Kenneth;Draguljic, Danel - 通讯作者:
Draguljic, Danel
Analysis of PM2.5 using the Environmental Benefits Mapping and Analysis Program (BenMAP)
- DOI:
10.1080/15287390600884982 - 发表时间:
2007-02-01 - 期刊:
- 影响因子:2.6
- 作者:
Davidson, Kenneth;Hallberg, Aaron;Hubbell, Bryan - 通讯作者:
Hubbell, Bryan
Internalized Homonegativity, Sense of Belonging, and Depressive Symptoms Among Australian Gay Men
- DOI:
10.1080/00918369.2016.1190215 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:2.6
- 作者:
Davidson, Kenneth;McLaren, Suzanne;Molloy, Mari - 通讯作者:
Molloy, Mari
Davidson, Kenneth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Davidson, Kenneth', 18)}}的其他基金
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
RGPIN-2018-03973 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
RGPIN-2018-03973 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
RGPIN-2018-03973 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
RGPIN-2018-03973 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
RGPIN-2018-03973 - 财政年份:2018
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
3488-2013 - 财政年份:2016
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
3488-2013 - 财政年份:2015
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
3488-2013 - 财政年份:2014
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
3488-2013 - 财政年份:2013
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 2.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
- 批准号:
23K03151 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
- 批准号:
2247202 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
Standard Grant
Conference: Groundwork for Operator Algebras Lecture Series 2023
会议:2023 年算子代数系列讲座的基础
- 批准号:
2247796 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
Standard Grant
Conference: East Coast Operator Algebras Symposium 2023
会议:2023 年东海岸算子代数研讨会
- 批准号:
2321632 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
Standard Grant
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
- 批准号:
2247322 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
Continuing Grant
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
- 批准号:
RGPIN-2022-03600 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Conference: Groundwork for Operator Algebras Lecture Series (GOALS) 2022
会议:算子代数基础讲座系列 (GOALS) 2022
- 批准号:
2154574 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Standard Grant
Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
- 批准号:
2200862 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Standard Grant
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
RGPIN-2018-03973 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual