Separating sets in tree products, and applications
树木产品中的分离装置和应用
基本信息
- 批准号:435518-2013
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances by the principal investigator in topology of the plane have depended crucially on observations pertaining to a separating set in the (Cartesian) product of two trees. That is, if one lays down a tree as the "x-axis", and another as the "y-axis", one can study what sorts of sets of (x,y) pairs will separate the set of all pairs into two or more pieces. It is now being found that a more sophisticated and comprehensive understanding of such separating sets will lead to further advances on other significant open questions in continuum theory and plane topology. We focus on two old and well-known problems: determining whether all the homogeneous (topologically uniform, or "symmetrical") spaces in the plane have already been discovered (at present there are only three compact connected examples: the circle, and two very exotic spaces), and determining whether any map of a non-separating plane continuum to itself has a fixed point; that is, whether a continuous "motion" within a connected plane set with no holes must leave some point stationary. Settling these striking open questions would substantially illuminate properties of the topology of the plane, which underlies a number of mathematical fields, including (complex) analysis, dynamics, geometric function theory, and (Riemannian) geometry. We exhibit a number of approachable directions of study and questions on separators in tree products, and describe their direct connections to the above problems, and others. With the aid of large and accurate computer-generated graphs, we will carefully study examples of separating sets in existing literature, and generate new examples and results, which will help isolate and illuminate the difficult combinatorics at the heart of significant open problems in plane topology.
这位首席研究员在平面拓扑学方面的最新进展,在很大程度上依赖于对两棵树(笛卡尔)积中的分离集的观察。也就是说,如果将一棵树作为“x轴”,另一棵树作为“y轴”,那么就可以研究哪种(x,y)对的集合将把所有对的集合分成两个或更多部分。现在人们发现,对这种分离集的更复杂和全面的理解将导致在连续统理论和平面拓扑中其他重大开放问题的进一步进展。我们关注两个古老而众所周知的问题:确定平面上是否已经发现了所有齐次(拓扑均匀或“对称”)空间(目前只有三个紧连通的例子:圆和两个非常奇特的空间),以及确定非分离平面连续体到自身的任何映射是否有一个不动点;也就是说,在一个没有孔的连通平面内的连续“运动”是否必须使某一点静止。解决这些引人注目的开放性问题将从本质上阐明平面拓扑的性质,这是许多数学领域的基础,包括(复杂)分析、动力学、几何函数理论和(黎曼)几何。我们展示了一些可接近的研究方向和问题的分离产品,并描述了他们的直接联系,上述问题,以及其他。借助大型和精确的计算机生成图,我们将仔细研究现有文献中分离集的例子,并生成新的例子和结果,这将有助于隔离和阐明平面拓扑中重要开放问题核心的困难组合学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hoehn, Logan其他文献
Hoehn, Logan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hoehn, Logan', 18)}}的其他基金
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
- 批准号:
RGPIN-2019-05998 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
- 批准号:
RGPIN-2019-05998 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
- 批准号:
RGPIN-2019-05998 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
- 批准号:
RGPAS-2019-00089 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
- 批准号:
RGPIN-2019-05998 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Classical forms of homogeneity in continuum theory
连续统理论中同质性的经典形式
- 批准号:
RGPAS-2019-00089 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Separating sets in tree products, and applications
树木产品中的分离装置和应用
- 批准号:
435518-2013 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Separating sets in tree products, and applications
树木产品中的分离装置和应用
- 批准号:
435518-2013 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Separating sets in tree products, and applications
树木产品中的分离装置和应用
- 批准号:
435518-2013 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Separating sets in tree products, and applications
树木产品中的分离装置和应用
- 批准号:
435518-2013 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于Fuzzy Sets的视频差错掩盖技术研究
- 批准号:60672134
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
浅电子陷阱掺杂剂对光电子衰减过程的影响
- 批准号:10354001
- 批准年份:2003
- 资助金额:15.0 万元
- 项目类别:专项基金项目
相似海外基金
Spatial restriction of exponential sums to thin sets and beyond
指数和对稀疏集及以上的空间限制
- 批准号:
2349828 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Advances on Combinatorics of the Real Line and Topology
实线与拓扑组合学研究进展
- 批准号:
23K03198 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
- 批准号:
2247163 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
- 批准号:
10768004 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Collaborative Research: Data-Driven Invariant Sets for Provably Safe Autonomy
协作研究:数据驱动的不变集可证明安全的自治
- 批准号:
2303157 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
LEAPS-MPS: Controllable sets for nonlinear switched models with applications to infectious diseases
LEAPS-MPS:非线性切换模型的可控集及其在传染病中的应用
- 批准号:
2315862 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
On a Combinatorial Characterization of Dynamical Invariant Sets of Regulatory Networks
关于调节网络动态不变集的组合表征
- 批准号:
23K03240 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Constructing large scale data sets, developing methods to analyze such data sets, and their empirical implementations
构建大规模数据集,开发分析此类数据集的方法及其实证实施
- 批准号:
23K17285 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)














{{item.name}}会员




