The Aggregate Risk and Completely Mixable Distributions
总风险和完全混合分布
基本信息
- 批准号:435844-2013
- 负责人:
- 金额:$ 1.17万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aggregate risk is of general interest in actuarial science and quantitative risk management. An important and challenging scenario is when the individual risks have known marginal distributions but an unknown dependence structure. This scenario arises from the fact that marginal distributions can be relatively easily modeled with statistical and financial tools in practice, but the dependence structure is much more difficult to capture accurately through available data. With the dependence structure unknown, it remains difficult for the banks and insurance companies to offset the aggregated risks according to industrial regulations. Due to such a concern, researchers are trying to quantify optimal bounds on risk measures of aggregate risk. Such problems were considered extensively with various assumptions in the past few decades and they were proven to be very challenging. Recently, a new tool, called the Completely Mixable Distributions (CMD), was introduced to deal with those problems. Copulas are multivariate functions that are used to model dependence structure, which also play an important role in quantifying aggregate risk. The measures considered in this proposal include important risk quantities such as the Value-at-Risk, Conditional Tail Expectation, the variance, the expected ultility and the stop-loss premium of the aggregate risk.This proposal includes research to 1) develop the theory of CMD; 2) quantify aggregate risk; 3) develop the theory of copulas. The main mathematical tools that will be used include probability distribution theory, copulas, combinatorics and mass transportation. Data analysis and numerical calculation will also play an important role. The proposed study will have significant value in probability, actuarial science and risk management. Graduate students will be intensively involved in the research process. They will gain skills in conducting research and numerical calculation, learn knowledge in mathematics, actuarial science and risk management, and fulfill the research requirements in their graduate programs through the proposed research.
总风险是精算学和定量风险管理中的普遍兴趣。一个重要且具有挑战性的场景是,个体风险具有已知的边际分布,但依赖结构未知。这种情况产生于这样一个事实,即边际分布在实践中可以相对容易地用统计和金融工具建模,但依赖结构要通过现有数据准确捕捉要困难得多。由于依赖结构未知,银行和保险公司仍然难以根据行业规则抵消累积风险。由于这种关注,研究人员正试图量化风险度量的最优范围。在过去数十年中,这些问题在各种假设下得到了广泛的考虑,并且证明它们非常具有挑战性。最近,一个新的工具,称为完全混合分布(CMD),被引入来处理这些问题。Copula函数是一种多元函数,用于对相关结构进行建模,在量化总体风险方面也发挥着重要作用。本文的研究内容包括风险价值、条件尾期望、方差、期望效用和止损溢价等重要的风险量,主要研究内容包括:(1)拓展CMD理论;(2)量化总体风险;(3)拓展Copula理论。将使用的主要数学工具包括概率分布理论,copula,组合学和质量运输。数据分析和数值计算也将发挥重要作用。该研究在概率论、精算学和风险管理方面具有重要的价值。研究生将深入参与研究过程。他们将获得进行研究和数值计算的技能,学习数学,精算学和风险管理知识,并通过拟议的研究完成研究生课程的研究要求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wang, Ruodu其他文献
Risk bounds for factor models
- DOI:
10.1007/s00780-017-0328-4 - 发表时间:
2017-07-01 - 期刊:
- 影响因子:1.7
- 作者:
Bernard, Carole;Rueschendorf, Ludger;Wang, Ruodu - 通讯作者:
Wang, Ruodu
Post-selection inference for e-value based confidence intervals
基于 e 值置信区间的选择后推断
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xu, Ziyu;Wang, Ruodu;Ramdas, Aaditya - 通讯作者:
Ramdas, Aaditya
Aggregation-robustness and model uncertainty of regulatory risk measures
监管风险措施的聚合稳健性和模型不确定性
- DOI:
10.1007/s00780-015-0273-z - 发表时间:
2015-10-01 - 期刊:
- 影响因子:1.7
- 作者:
Embrechts, Paul;Wang, Bin;Wang, Ruodu - 通讯作者:
Wang, Ruodu
On aggregation sets and lower-convex sets
关于聚合集和低凸集
- DOI:
10.1016/j.jmva.2014.12.001 - 发表时间:
2015-06 - 期刊:
- 影响因子:1.6
- 作者:
Mao, Tiantian;Wang, Ruodu - 通讯作者:
Wang, Ruodu
Quantile-based risk sharing with heterogeneous beliefs
具有异质信念的基于分位数的风险分担
- DOI:
10.1007/s10107-018-1313-1 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:2.7
- 作者:
Embrechts, Paul;Liu, Haiyan;Wang, Ruodu - 通讯作者:
Wang, Ruodu
Wang, Ruodu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wang, Ruodu', 18)}}的其他基金
Model uncertainty and robustness in risk management
风险管理中的不确定性和稳健性模型
- 批准号:
RGPIN-2018-03823 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Model uncertainty and robustness in risk management
风险管理中的不确定性和稳健性模型
- 批准号:
RGPIN-2018-03823 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Model uncertainty and robustness in risk management
风险管理中的不确定性和稳健性模型
- 批准号:
RGPIN-2018-03823 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Model uncertainty and robustness in risk management
风险管理中的不确定性和稳健性模型
- 批准号:
522590-2018 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Model uncertainty and robustness in risk management
风险管理中的不确定性和稳健性模型
- 批准号:
RGPIN-2018-03823 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Model uncertainty and robustness in risk management
风险管理中的不确定性和稳健性模型
- 批准号:
RGPIN-2018-03823 - 财政年份:2018
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Model uncertainty and robustness in risk management
风险管理中的不确定性和稳健性模型
- 批准号:
522590-2018 - 财政年份:2018
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
The Aggregate Risk and Completely Mixable Distributions
总风险和完全混合分布
- 批准号:
435844-2013 - 财政年份:2016
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
The Aggregate Risk and Completely Mixable Distributions
总风险和完全混合分布
- 批准号:
435844-2013 - 财政年份:2015
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
The Aggregate Risk and Completely Mixable Distributions
总风险和完全混合分布
- 批准号:
435844-2013 - 财政年份:2014
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
The Heterogenous Impact of Monetary Policy on Firms' Risk and Fundamentals
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于移动健康技术干预动脉粥样硬化性心血管疾病高危人群的随机对照现场试验:The ASCVD Risk Intervention Trial
- 批准号:81973152
- 批准年份:2019
- 资助金额:54.0 万元
- 项目类别:面上项目
基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
- 批准号:71903144
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
RISK通路在胃泌素介导的心脏缺血再灌注损伤保护中的作用研究
- 批准号:81800239
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
异氟烷基于TLR4/RISK/NF-κB调控糖尿病缺血性脑卒中后NLRP3炎症小体形成的机制研究
- 批准号:81771232
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:面上项目
Notch1与RISK/SAFE/HIF-1α信号通路整合在I-postC保护中的作用及其机制
- 批准号:81260024
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The role of youth voluntary actions in Disaster Risk Reduction in the Ganges Brahmaputra and Meghna (GBM) delta
青年志愿行动在雅鲁藏布江和梅格纳河三角洲减少灾害风险中的作用
- 批准号:
2593674 - 财政年份:2025
- 资助金额:
$ 1.17万 - 项目类别:
Studentship
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
- 批准号:
AH/Z000084/1 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Research Grant
Examining the Effect of Childhood Individual and Contextual Risk Factors on Violence Use and Experience at Early Adulthood (18-21 years)
检查童年个体和背景风险因素对成年早期(18-21 岁)暴力使用和经历的影响
- 批准号:
2901103 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Studentship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Fellowship
NSF PRFB FY 2023: Considering evolutionary responses to temperature variability when predicting risk to climate change and disease in amphibians
NSF PRFB 2023 财年:在预测气候变化和两栖动物疾病风险时考虑对温度变化的进化反应
- 批准号:
2305659 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Fellowship Award
Investigation of crosstalk between Fanconi Anemia pathway and ATM for novel therapeutic strategies of chemoresistant ALT-positive high-risk neuroblastoma
范可尼贫血通路与 ATM 之间的串扰研究,用于化疗耐药 ALT 阳性高危神经母细胞瘤的新治疗策略
- 批准号:
24K10442 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
I-Corps: Non-Invasive Software Tool for Risk Assessment of Intracranial Aneurysms (IA)
I-Corps:用于颅内动脉瘤 (IA) 风险评估的非侵入性软件工具
- 批准号:
2402381 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Machine Learning Risk Stratification Tool for Venous Thromboembolism
I-Corps:机器学习风险分层工具对静脉血栓栓塞的转化潜力
- 批准号:
2420417 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant