Collaborative Research: IMR: MM-1A: MapQ: Mapping Quality of Coverage in Mobile Broadband Networks using Latent Gaussian Process Models

合作研究:IMR:MM-1A:MapQ:使用潜在高斯过程模型映射移动宽带网络的覆盖质量

基本信息

  • 批准号:
    2220387
  • 负责人:
  • 金额:
    $ 22.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

About 85% of people in the United States own a smartphone and use it to access the Internet on a regular basis, checking e-mail, using video conferencing applications, communicating with a doctor’s office, or searching for an answer to an urgent question. Sometimes these applications work well, and other times they do not. When they do not work well, the problem is often with the mobile broadband cellular network in the place and at the time of use. Unfortunately no one knows completely and accurately where high quality access exists, nor where regions of limited or no access are present. Accurate maps of coverage quality would enable resources to be directed to areas of greatest need, allow long term tracking of progress on the digital divide, and form a building block for new applications that can adapt to network quality. This project aims to create accurate and complete maps of cellular coverage quality by bringing together multiple measurement datasets and creating guidance for new measurements. This collaborative project brings together experts in statistical modeling, machine learning, and mobile networking from Georgia Institute of Technology and University of California, Santa Barbara. The project has two thrusts. The first focuses on creating mathematical models to predict cellular network quality using latent Gaussian processes in novel ways to combine measurement datasets collected with different methodologies. One set of models will consider how coverage quality varies over geographic space; the other will consider how it varies over time. The second thrust focuses on using the predicted coverage quality maps in two key ways, to use the models to create a Quality of Coverage metric that provides useful information to network users, and to use the models to guide in future measurement campaigns so that regions that are not well understood get prioritized. The United States Federal Government and other government and non-government organizations have allocated funding to broaden Internet access. However, because no one accurately knows where high quality access exists (or does not), it is difficult to target investments to communities of highest need. If successful, this work will be able to inform local, state, and federal governments about where investment should be made to ensure all Americans have access to high quality mobile Internet. As a result, residents of these communities will benefit from the educational, economic, and medical benefits that Internet access enables. https://sites.gatech.edu/mapping-broadband/ - this site will contain products of the project, including datasets, models, algorithms, and publications resulting from the work. The website and repository will be maintained for at least five years, from 2022 to 2027.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国,大约85%的人拥有智能手机,并定期使用它来访问互联网,检查电子邮件,使用视频会议应用程序,与医生办公室沟通,或搜索紧急问题的答案。这些应用程序有时运行良好,有时则不然。当它们不能很好地工作时,问题往往与移动宽带蜂窝网络在使用的地点和时间有关。不幸的是,没有人完全准确地知道哪里有高质量的医疗服务,也没有人知道哪里有有限或没有医疗服务的地区。准确的覆盖质量地图将使资源能够定向到最需要的领域,允许对数字鸿沟的进展进行长期跟踪,并形成能够适应网络质量的新应用程序的构建块。该项目旨在通过汇集多个测量数据集并为新测量创建指南,创建准确而完整的蜂窝覆盖质量地图。这个合作项目汇集了来自佐治亚理工学院和加州大学圣巴巴拉分校的统计建模、机器学习和移动网络方面的专家。该项目有两个重点。第一个重点是创建数学模型来预测蜂窝网络质量,使用潜在高斯过程以新颖的方式结合使用不同方法收集的测量数据集。一组模型将考虑覆盖质量在地理空间上的变化;另一个将考虑它如何随时间变化。第二个要点着重于以两种关键方式使用预测的覆盖质量图,使用模型来创建覆盖质量度量,为网络用户提供有用的信息,并使用模型来指导未来的测量活动,以便不被很好地理解的区域得到优先级。美国联邦政府和其他政府及非政府组织已拨款扩大互联网接入。然而,由于没有人确切地知道哪里存在(或不存在)高质量的访问,因此很难将投资目标对准最需要的社区。如果成功,这项工作将能够告知地方、州和联邦政府应该在哪里投资,以确保所有美国人都能访问高质量的移动互联网。因此,这些社区的居民将受益于互联网接入带来的教育、经济和医疗方面的好处。https://sites.gatech.edu/mapping-broadband/ -这个网站将包含项目的产品,包括数据集,模型,算法,和出版物产生的工作。该网站和储存库将从2022年到2027年至少维护5年。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yao Xie其他文献

Development of Intra-Aortic Balloon Pump with Vascular Stent and Vitro Simulation Verification
带血管支架的主动脉内球囊泵的研制及体外模拟验证
Interpretable Generative Neural Spatio-Temporal Point Processes
可解释的生成神经时空点过程
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shixiang Zhu;Shuang Li;Yao Xie
  • 通讯作者:
    Yao Xie
Broadband achromatic polarization-insensitivemetalens in the mid-wave infrared range
中波红外范围内的宽带消色差偏振不敏感金属透镜
  • DOI:
    10.1364/ao.454303
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Yao Xie;Jianqi Zhang;Shiyu Wang;Delian Liu;Xin Wu
  • 通讯作者:
    Xin Wu
The Predictive Value of On-treatment Virological Response for Sustained Virological Response in C h r o n i c H e p a i i s Personalized Treatment Program
治疗中病毒学反应对慢性肝炎持续病毒学反应的预测价值是个性化治疗计划
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minghui Li;Yao Xie;Yao Lu;Guo;Lu Zhang;G. Shen;L. Zhuang;Ju;Hu;J. Dong;Cai;Lei;Li;Xing;Min Yang;;Zhong Wu;Hui Zhao;Shu;Jun Cheng;Dao
  • 通讯作者:
    Dao
Nearly second-order optimality of online joint detection and estimation via one-sample update schemes
通过单样本更新方案实现在线联合检测和估计的近二阶最优性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Cao;Liyan Xie;Yao Xie;Huan Xu
  • 通讯作者:
    Huan Xu

Yao Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yao Xie', 18)}}的其他基金

Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
Bridging Statistical Hypothesis Tests and Deep Learning for Reliability and Computational Efficiency
连接统计假设检验和深度学习以提高可靠性和计算效率
  • 批准号:
    2134037
  • 财政年份:
    2022
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Continuing Grant
Sequential Detection and Prediction for Solar Situation Awareness in Power Networks
电力网络中太阳态势感知的顺序检测和预测
  • 批准号:
    1938106
  • 财政年份:
    2019
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
ATD: Scanning Dynamic Spatial-Temporal Discrete Events for Threat Detection
ATD:扫描动态时空离散事件以进行威胁检测
  • 批准号:
    1830210
  • 财政年份:
    2018
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Continuing Grant
CAREER: Quick Detection for Streaming Data Over Dynamic Networks
职业:快速检测动态网络上的流数据
  • 批准号:
    1650913
  • 财政年份:
    2017
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Continuing Grant
CyberSEES: Type 2: Collaborative Research: Real-time Ambient Noise Seismic Imaging for Subsurface Sustainability
Cyber​​SEES:类型 2:协作研究:用于地下可持续性的实时环境噪声地震成像
  • 批准号:
    1442635
  • 财政年份:
    2015
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for the 10th ACM International Conference on Underwater Networks and System (WUWNet'15)
NSF 学生旅费资助第十届 ACM 国际水下网络和系统会议 (WUWNet15)
  • 批准号:
    1551297
  • 财政年份:
    2015
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: IMR: MM-1C: Methods for Active Measurement of the Domain Name System
合作研究:IMR:MM-1C:域名系统主动测量方法
  • 批准号:
    2319367
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
  • 批准号:
    2319486
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
  • 批准号:
    2344341
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Automating Privacy-Preserving Data Sharing of Campus Network Traffic Logs
合作研究:IMR:MM-1B:自动化校园网络流量日志的隐私保护数据共享
  • 批准号:
    2319421
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
  • 批准号:
    2319488
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Functional Data Analysis-aided Learning Methods for Robust Wireless Measurements
合作研究:IMR:MM-1A:用于稳健无线测量的功能数据分析辅助学习方法
  • 批准号:
    2319342
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1B: Automating Privacy-Preserving Data Sharing of Campus Network Traffic Logs
合作研究:IMR:MM-1B:自动化校园网络流量日志的隐私保护数据共享
  • 批准号:
    2319422
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
Collaborative Research: IMR: MM-1A: Measuring Internet Access Networks Across Space and Time
合作研究:IMR:MM-1A:跨空间和时间测量互联网接入网络
  • 批准号:
    2319603
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1C: Methods for Active Measurement of the Domain Name System
合作研究:IMR:MM-1C:域名系统主动测量方法
  • 批准号:
    2319368
  • 财政年份:
    2023
  • 资助金额:
    $ 22.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了