Advanced Flow Control for High Speed Propulsion Systems
高速推进系统的先进流量控制
基本信息
- 批准号:RGPIN-2017-06279
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study and development of high speed airbreathing propulsion is generally associated with countries at the forefront of advanced propulsion systems. The research required to understand and develop these concepts often has application to a much wider variety of fields. Recent research conducted at Carleton University in collaboration with the JAXA Kakuda Space Propulsion Center on airbreathing rocket propulsion has experimentally shown that the Exchange Inlet concept is effective at significantly decreasing engine length while behaving closer to the theoretical optimum than more conventional designs. Plasma actuators have been shown to be effective on a wide range of devices at low speeds in terms of modifying boundary layers for the delay or acceleration of separation. However, their potential effect on internal high speed aerodynamics is an open field of research. Therefore, the combination of both of these technologies (Exchange Inlet and plasma actuator) will provide a unique opportunity to contribute to advanced propulsion technologies through studying the fundamental principles that govern the relationship between compressible aerodynamics and electromagnetics. Similar to the concept of radical farming in scramjet propulsion, sequential operation of plasma actuators can create pockets of ionized flow. These pockets can be manipulated electromagnetically if sufficient ionization is achieved to accelerate, extract/input energy, or actively guide the flow. Depending on the design of the plasma actuator, small jets, recirculation, and swirl can be generated to create small flow perturbations. These can be beneficial to processes which require mixing (such as rapid combustion) and also to inlet and internal flows which generally operate most effectively when the flow follows the wall contour. The magnitude and shape of these perturbations can be changed significantly depending on the design of the plasma actuator itself, an effect that will also be studied in this research proposal. Using numerical simulation techniques currently available in our research group, numerous flowfields will be examined. Time accurate simulations of potential plasma actuator designs will be studied and compared to experimental data collected by our research group. This will yield information on how best to optimize the design to maximize the desired induced flow behavior as well as help understand the physical principles underlying the results. A successful outcome of this proposal will advance knowledge in the areas magnetohydrodynamic simulation, plasma generation, and high speed flow manipulation for propulsion. Through the incorporation plasma actuators (which in isolation are currently under considerable research and development internationally) into a novel, in house, rocket technology, a strong body of Canadian researchers will be trained.
高速吸气式推进的研究和发展通常与处于先进推进系统前沿的国家有关。理解和发展这些概念所需的研究往往适用于更广泛的领域。卡尔顿大学最近与日本宇宙航空研究开发机构卡库达空间推进中心合作进行的关于吸气式火箭推进的研究实验表明,交换式进气道概念在显著减少发动机长度方面是有效的,同时比更传统的设计更接近理论最佳值。等离子体致动器已被证明是有效的,在广泛的设备在低速方面修改边界层的延迟或加速分离。然而,它们对内部高速空气动力学的潜在影响是一个开放的研究领域。因此,这两种技术(交换进气道和等离子体致动器)的组合将提供一个独特的机会,通过研究可压缩空气动力学和电磁学之间的关系的基本原则,促进先进的推进技术。类似于超燃冲压发动机推进中的自由基农业概念,等离子体致动器的顺序操作可以产生电离流的口袋。如果实现足够的电离以加速、提取/输入能量或主动引导流动,则可以电磁地操纵这些袋。根据等离子体致动器的设计,可以产生小射流、再循环和涡流以产生小的流动扰动。这些对于需要混合的过程(例如快速燃烧)以及对于当流动遵循壁轮廓时通常最有效地操作的入口和内部流动是有益的。这些扰动的大小和形状可以根据等离子体致动器本身的设计而显着改变,这种影响也将在本研究提案中进行研究。利用我们研究小组目前可用的数值模拟技术,将检查许多流场。时间精确模拟潜在的等离子体致动器的设计将进行研究,并与我们的研究小组收集的实验数据进行比较。这将产生关于如何最好地优化设计以最大化期望的诱导流行为的信息,以及帮助理解结果背后的物理原理。这一建议的成功结果将推进磁流体动力学模拟,等离子体产生和高速流动操纵推进等领域的知识。通过将等离子致动器(目前在国际上正在进行大量的单独研究和开发)纳入一种新的内部火箭技术,将培训一批强大的加拿大研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Etele, Jason其他文献
Etele, Jason的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Etele, Jason', 18)}}的其他基金
Improved NOx Emission for High Speed Airbreathing Engines using Plasma Effects
利用等离子体效应改善高速吸气式发动机的氮氧化物排放
- 批准号:
RGPIN-2022-05304 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advanced Flow Control for High Speed Propulsion Systems
高速推进系统的先进流量控制
- 批准号:
RGPIN-2017-06279 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advanced Flow Control for High Speed Propulsion Systems
高速推进系统的先进流量控制
- 批准号:
RGPIN-2017-06279 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advanced Flow Control for High Speed Propulsion Systems
高速推进系统的先进流量控制
- 批准号:
RGPIN-2017-06279 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advanced Flow Control for High Speed Propulsion Systems
高速推进系统的先进流量控制
- 批准号:
RGPIN-2017-06279 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Numerical investigation of ice accretion and mitigation on GPS antennas
GPS天线积冰与减冰的数值研究
- 批准号:
513458-2017 - 财政年份:2017
- 资助金额:
$ 1.6万 - 项目类别:
Engage Grants Program
Ultrasonic three dimensional localization for UAVs in the absence of GPS
无GPS情况下无人机超声波三维定位
- 批准号:
501114-2016 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Engage Grants Program
Improved Numerical Modeling of Plasma Physics
等离子体物理数值模拟的改进
- 批准号:
419456-2011 - 财政年份:2014
- 资助金额:
$ 1.6万 - 项目类别:
Department of National Defence / NSERC Research Partnership
Improved Numerical Modeling of Plasma Physics
等离子体物理数值模拟的改进
- 批准号:
419456-2011 - 财政年份:2013
- 资助金额:
$ 1.6万 - 项目类别:
Department of National Defence / NSERC Research Partnership
Improved Numerical Modeling of Plasma Physics
等离子体物理数值模拟的改进
- 批准号:
419456-2011 - 财政年份:2012
- 资助金额:
$ 1.6万 - 项目类别:
Department of National Defence / NSERC Research Partnership
相似国自然基金
肝硬化患者4D Flow MRI血流动力学与肝脂肪和铁代谢的交互机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于4D Flow MRI 技术联合HA/cRGD-GD-LPs对比剂增强扫描诊断肝纤维化分期的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于4 D-Flow MRI评估吻合口大小对动静脉瘘的血流动力学以及临床预后的影响
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
构建4D-Flow-CFD仿真模型定量评估肝硬化门静脉血流动力学
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于4D-FLOW MRI实现特发性颅内压增高患者静脉窦无创测压和血流动力学分析
- 批准号:82301457
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
结合4D flow的多模态心脏磁共振成像在肥厚型心肌病中的应用研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
驻高海拔地区铁路建设工程项目员工的Flow体验、国家认同与心理韧性:积极环境心理学视角
- 批准号:72271205
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
基于Flow-through流场的双离子嵌入型电容去离子及其动力学调控研究
- 批准号:52009057
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
- 批准号:82071991
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
- 批准号:81801139
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced Continuous Flow Ohmic Heating for Solid-Liquid Foods: Balancing Quality, Safety, Sustainability, and Intelligent Process Control
适用于固液食品的先进连续流欧姆加热:平衡质量、安全性、可持续性和智能过程控制
- 批准号:
10074002 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Collaborative R&D
Low-Load Resistance Training with Blood Flow Restriction in People with Multiple Sclerosis and Advanced Disability: A Randomized Control Trial
多发性硬化症和严重残疾患者的低负荷阻力训练和血流限制:随机对照试验
- 批准号:
10536164 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Advanced Flow Control for High Speed Propulsion Systems
高速推进系统的先进流量控制
- 批准号:
RGPIN-2017-06279 - 财政年份:2021
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advanced control of heat transfer and fluid flow by magnetic nano-rod dispersion type magnetic functional nanofluid
磁性纳米棒分散型磁性功能纳米流体对传热和流体流动的高级控制
- 批准号:
20K04263 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced Flow Control for High Speed Propulsion Systems
高速推进系统的先进流量控制
- 批准号:
RGPIN-2017-06279 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Advanced Flow Control for High Speed Propulsion Systems
高速推进系统的先进流量控制
- 批准号:
RGPIN-2017-06279 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Next-generation flow control using the reduced-order model based on advanced unsteady flow measurement
使用基于先进非定常流量测量的降阶模型的下一代流量控制
- 批准号:
19KK0116 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Advanced Flow Control for High Speed Propulsion Systems
高速推进系统的先进流量控制
- 批准号:
RGPIN-2017-06279 - 财政年份:2018
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Grants Program - Individual
Hypervelocity Roughness-Induced Laminar-Turbulent Transition for Advanced Scramjet Flow Control
用于先进超燃冲压发动机流动控制的超高速粗糙度引起的层流-湍流转变
- 批准号:
DE140100932 - 财政年份:2014
- 资助金额:
$ 1.6万 - 项目类别:
Discovery Early Career Researcher Award
Studies on Advanced Film Cooling Technologies by use of Robust Flow-Control Devices
利用鲁棒流量控制装置的先进薄膜冷却技术研究
- 批准号:
26420098 - 财政年份:2014
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)