Integration of Human and Machine Observers for the Interpretation of Medical Images
整合人类和机器观察者来解读医学图像
基本信息
- 批准号:516276-2017
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Medical images must be interpreted by medical professionals to determine the presence of disease. Like allhumans, medical professionals have limited attention and make mistakes. Furthermore, modern imagingequipment produce larger and more complex data which the human observer struggles to analyze. Moderncomputer algorithms can identify more subtle patterns, can analyze larger datasets, learn from more examplesand are reproducible. Nevertheless we do not always know how to program computers for certain tasks andtherefore rely on adaptive algorithms to "learn" to detect disease. To leverage the strength of expert humanobservers and machine observers we require two-way collaboration between man and machine. In this projectwe propose to adapt an existing medical image viewing system, in collaboration with its vendor (HermesMedical Solutions), to enable computer aided diagnosis (where the machine helps the physician) andsupervised machine learning (where the user provides corrective feedback to the learning machine).
医学图像必须由医学专业人员解释,以确定疾病的存在。像所有人一样,医疗专业人员的注意力有限,也会犯错误。此外,现代成像设备产生更大和更复杂的数据,人类观察者难以分析。现代计算机算法可以识别更微妙的模式,可以分析更大的数据集,从更多的例子中学习,并且是可重复的。然而,我们并不总是知道如何为计算机编程以完成某些任务,因此我们依赖自适应算法来“学习”检测疾病。为了充分利用专家人类观察者和机器观察者的力量,我们需要人与机器之间的双向合作。在这个项目中,我们建议与其供应商(Hermes Medical Solutions)合作,调整现有的医学图像查看系统,以实现计算机辅助诊断(机器帮助医生)和监督机器学习(用户向学习机器提供纠正反馈)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Klein, Ran其他文献
Development and validation of the Lesion Synthesis Toolbox and the Perception Study Tool for quantifying observer limits of detection of lesions in positron emission tomography
- DOI:
10.1117/1.jmi.7.2.022412 - 发表时间:
2020-03-01 - 期刊:
- 影响因子:2.4
- 作者:
Gabrani-Juma, Hanif;Al Bimani, Zamzam;Klein, Ran - 通讯作者:
Klein, Ran
Clinical comparison of the positron emission tracking (PeTrack) algorithm with the real-time position management system for respiratory gating in cardiac positron emission tomography
- DOI:
10.1002/mp.14052 - 发表时间:
2020-02-19 - 期刊:
- 影响因子:3.8
- 作者:
Manwell, Spencer;Klein, Ran;deKemp, Robert A. - 通讯作者:
deKemp, Robert A.
Patient body motion correction for dynamic cardiac PET-CT by attenuation-emission alignment according to projection consistency conditions
- DOI:
10.1002/mp.13419 - 发表时间:
2019-04-01 - 期刊:
- 影响因子:3.8
- 作者:
Hunter, Chad R. R. N.;Klein, Ran;deKemp, Robert A. - 通讯作者:
deKemp, Robert A.
Absolute myocardial flow quantification with (82)Rb PET/CT: comparison of different software packages and methods.
- DOI:
10.1007/s00259-013-2537-1 - 发表时间:
2014-01 - 期刊:
- 影响因子:9.1
- 作者:
Tahari, Abdel K.;Lee, Andy;Rajaram, Mahadevan;Fukushima, Kenji;Lodge, Martin A.;Lee, Benjamin C.;Ficaro, Edward P.;Nekolla, Stephan;Klein, Ran;deKemp, Robert A.;Wahl, Richard L.;Bengel, Frank M.;Bravo, Paco E. - 通讯作者:
Bravo, Paco E.
Feasibility and operator variability of myocardial blood flow and reserve measurements with 99mTc-sestamibi quantitative dynamic SPECT/CT imaging
- DOI:
10.1007/s12350-014-9971-8 - 发表时间:
2014-12-01 - 期刊:
- 影响因子:2.4
- 作者:
Klein, Ran;Hung, Guang-Uei;Hsu, Bailing - 通讯作者:
Hsu, Bailing
Klein, Ran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Klein, Ran', 18)}}的其他基金
Pushing the limits of detection with PET
突破 PET 检测极限
- 批准号:
RGPIN-2020-04741 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Pushing the limits of detection with PET
突破 PET 检测极限
- 批准号:
RGPAS-2020-00107 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Pushing the limits of detection with PET
突破 PET 检测极限
- 批准号:
RGPIN-2020-04741 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Pushing the limits of detection with PET
突破 PET 检测极限
- 批准号:
RGPAS-2020-00107 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Pushing the limits of detection with PET
突破 PET 检测极限
- 批准号:
RGPIN-2020-04741 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Pushing the limits of detection with PET
突破 PET 检测极限
- 批准号:
RGPAS-2020-00107 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Improving the accuracy of cardiac PET with motion-free imaging.
通过无运动成像提高心脏 PET 的准确性。
- 批准号:
436149-2013 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Group
Improving the accuracy of cardiac PET with motion-free imaging.
通过无运动成像提高心脏 PET 的准确性。
- 批准号:
436149-2013 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Group
Improving the accuracy of cardiac PET with motion-free imaging.
通过无运动成像提高心脏 PET 的准确性。
- 批准号:
436149-2013 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Group
Image data de-identification for biomedical research
用于生物医学研究的图像数据去识别化
- 批准号:
463191-2014 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
相似国自然基金
靶向Human ZAG蛋白的降糖小分子化合物筛选以及疗效观察
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HBV S-Human ESPL1融合基因在慢性乙型肝炎发病进程中的分子机制研究
- 批准号:81960115
- 批准年份:2019
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
基于自适应表面肌电模型的下肢康复机器人“Human-in-Loop”控制研究
- 批准号:61005070
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Signal Processing of Electromyography with Bayesian Framework for Next Generation Motion Integration Human Machine Interface
使用贝叶斯框架进行肌电图信号处理,用于下一代运动集成人机界面
- 批准号:
RGPIN-2016-04137 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Signal Processing of Electromyography with Bayesian Framework for Next Generation Motion Integration Human Machine Interface
使用贝叶斯框架进行肌电图信号处理,用于下一代运动集成人机界面
- 批准号:
RGPIN-2016-04137 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Signal Processing of Electromyography with Bayesian Framework for Next Generation Motion Integration Human Machine Interface
使用贝叶斯框架进行肌电图信号处理,用于下一代运动集成人机界面
- 批准号:
RGPIN-2016-04137 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Hummingbird: Human-machine integration for biometric authentication
Hummingbird:用于生物识别认证的人机集成
- 批准号:
EP/R030839/1 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Research Grant
Signal Processing of Electromyography with Bayesian Framework for Next Generation Motion Integration Human Machine Interface
使用贝叶斯框架进行肌电图信号处理,用于下一代运动集成人机界面
- 批准号:
493013-2016 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Signal Processing of Electromyography with Bayesian Framework for Next Generation Motion Integration Human Machine Interface
使用贝叶斯框架进行肌电图信号处理,用于下一代运动集成人机界面
- 批准号:
RGPIN-2016-04137 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Planning Grant: Engineering Research Center for Human, Machine, and Network Functional, Symbiotic Integration On Neural Systems (Human Fusions)
规划资助:人机网络神经系统功能共生集成工程研究中心(人类融合)
- 批准号:
1840510 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Signal Processing of Electromyography with Bayesian Framework for Next Generation Motion Integration Human Machine Interface
使用贝叶斯框架进行肌电图信号处理,用于下一代运动集成人机界面
- 批准号:
493013-2016 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Signal Processing of Electromyography with Bayesian Framework for Next Generation Motion Integration Human Machine Interface
使用贝叶斯框架进行肌电图信号处理,用于下一代运动集成人机界面
- 批准号:
RGPIN-2016-04137 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Signal Processing of Electromyography with Bayesian Framework for Next Generation Motion Integration Human Machine Interface
使用贝叶斯框架进行肌电图信号处理,用于下一代运动集成人机界面
- 批准号:
RGPIN-2016-04137 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual