Clustering and dimensionality reduction based techniques for low latency big data feature extraction applications
用于低延迟大数据特征提取应用的基于聚类和降维的技术
基本信息
- 批准号:522286-2017
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Mercedes-Benz Fuel Cell Division (MBFC) in Burnaby, Canada develops and runs the manufacturingprocesses required for the assembly of Fuel Cell Stack prototypes. MBFC uses the Manufacturing ExecutionSystem (MES) to collect and analyze data from the manufacturing lines to the database system. The size of thecollected data is very high and MBFC is not able to detect certain fuel cell defects in a timely manner.This Engage grant project aims to develop and evaluate a mechanism that reduces the time taken to search theMercedes-Benz Fuel Cell (MBFC's) big data and detect a failure in the manufacturing process in a real-timefashion. This will be done by critically studying and understanding MBFC's database schema and analysing agraph version of this database. A dimensionality reduction and feature extraction mechanism will be developedto search a specific cluster of the MBFC big data set and identify defective fuel cells using the Gas DiffusionLayer (GDL) bleed through method. Finally, a mechanism will be proposed to detect defective fuel cells in atotal data dump scenario.The proposed research is innovative because it will devise a novel real-time big data feature extractiontechnique that combines a low latency and high efficiency dimensionality reduction technique with a clusteringgraph-based database mechanism. Potential pitfalls and risks will be identified, mitigated and managed throughenhanced research methodologies, using diverse dimensionality reduction models and providing alternativeapproaches to detect features in big data.MBFC will be involved in the project by providing technical support, consultation and advice on issuesrelated to their database schema, Manufacturing Execution Systems (MES) interface and their GDL bleedthrough testing processes. This research will enable MBFC to establish a presence in fuel cell manufacturingand help establish Canada as a global leader in innovative green technologies.
位于加拿大本拿比的梅赛德斯-奔驰燃料电池部(MBFC)开发并运行燃料电池堆原型组装所需的制造流程。MBFC使用制造执行系统(MES)来收集和分析从生产线到数据库系统的数据。收集到的数据量非常大,MBFC无法及时发现某些燃料电池缺陷。该Engage资助项目旨在开发和评估一种机制,以减少搜索梅赛德斯-奔驰燃料电池(MBFC)大数据所需的时间,并实时检测制造过程中的故障。这将通过批判性地研究和理解MBFC的数据库模式和分析该数据库的agreeable版本来完成。将开发一种降维和特征提取机制,以搜索MBFC大数据集的特定聚类,并使用气体扩散层(GDL)渗透方法识别有缺陷的燃料电池。最后,本文提出了一种在数据转储场景下检测缺陷燃料电池的机制,该机制将低延迟、高效率的降维技术与基于聚类图的数据库机制相结合,提出了一种新的实时大数据特征提取技术。通过增强研究方法,使用不同的降维模型并提供检测大数据特征的替代方法,将识别、缓解和管理潜在的陷阱和风险。MBFC将参与该项目,就与其数据库模式、制造执行系统(MES)接口和GDL渗透测试流程相关的问题提供技术支持、咨询和建议。这项研究将使MBFC能够在燃料电池制造业中占有一席之地,并帮助加拿大成为创新绿色技术的全球领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AlAnbagi, Irfan其他文献
AlAnbagi, Irfan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AlAnbagi, Irfan', 18)}}的其他基金
Secure and Reliable Wireless Sensor Networks for Critical Internet of Things Applications
适用于关键物联网应用的安全可靠的无线传感器网络
- 批准号:
RGPIN-2019-06060 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Secure and Reliable Wireless Sensor Networks for Critical Internet of Things Applications
适用于关键物联网应用的安全可靠的无线传感器网络
- 批准号:
RGPIN-2019-06060 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Secure and Reliable Wireless Sensor Networks for Critical Internet of Things Applications
适用于关键物联网应用的安全可靠的无线传感器网络
- 批准号:
RGPIN-2019-06060 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Secure and Reliable Wireless Sensor Networks for Critical Internet of Things Applications
适用于关键物联网应用的安全可靠的无线传感器网络
- 批准号:
RGPIN-2019-06060 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Sensor Network-based Intelligent System for Transformer Health Monitoring and Data Analysis
基于传感器网络的变压器健康监测与数据分析智能系统
- 批准号:
538389-2019 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Secure and Reliable Wireless Sensor Networks for Critical Internet of Things Applications
适用于关键物联网应用的安全可靠的无线传感器网络
- 批准号:
DGECR-2019-00012 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Launch Supplement
Mercedes Benz fuel cell process optimization
梅赛德斯奔驰燃料电池工艺优化
- 批准号:
518401-2017 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Connect Grants Level 1
相似国自然基金
高维稀疏数据聚类研究
- 批准号:70771007
- 批准年份:2007
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
- 批准号:
10678264 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Identifying and quantifying genetic effects on neurodevelopmental trajectories in adolescents
识别和量化遗传对青少年神经发育轨迹的影响
- 批准号:
10817321 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Extension and demonstration of two-particle-level computational theory based on dimensionality reduction to nonlocal electron correlation effects
基于降维非局域电子相关效应的双粒子级计算理论的推广与论证
- 批准号:
22KK0226 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Trispecific CAR-T cells targeting CD19, CD20 and CD22 to treat B-cell malignancies
靶向 CD19、CD20 和 CD22 的三特异性 CAR-T 细胞治疗 B 细胞恶性肿瘤
- 批准号:
10735096 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Sensitivity analysis on Deep Learning (DL)-based dimensionality reduction methods of scRNA-seq data
基于深度学习 (DL) 的 scRNA-seq 数据降维方法的敏感性分析
- 批准号:
572254-2022 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
University Undergraduate Student Research Awards
Development of Dynamic Resting State Functional Connectivity Machine Learning Framework for Dementia
痴呆症动态静息态功能连接机器学习框架的开发
- 批准号:
10677543 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Immunophenotypes in the Idiopathic Inflammatory Myopathies
特发性炎症性肌病的免疫表型
- 批准号:
10427681 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别: