Data-Driven knowledge mobilization, translation and innovation
数据驱动的知识动员、转化和创新
基本信息
- 批准号:478840-2015
- 负责人:
- 金额:$ 18.14万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Strategic Projects - Group
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Knowledge workers comprise a large proportion of the workforce today working in the context of large-scale expert networks, spanning across different disciplines and organizations. They rely on software technologies for their discipline-specific activities and for their coordination and their communication with each other. This type of networked, interdisciplinary knowledge work is motivated by a belief that the complex problems of our time can only be effectively addressed through broad collaborations of experts and partners who act both as knowledge generators and receptors to create value through new products and services. However, even as this belief is generally, and increasingly shared, the question of "how these networks can be supported to become more effective" is still very much open and the subject of considerable debate. The goal of our proposed research is to develop methods and tools for analyzing and enhancing the data sets through which knowledge workers collaborate, our hypothesis being that, by doing so, we can effectively amplify their productivity. These methods and tools will be validated through case studies with our partner organizations: an enterprise research and development (R&D) organization (within Dell Computers) and two Canadian research networks (the AGE-WELL and GlycoNET NCEs). We will demonstrate how our tools can enhance innovation productivity and help mobilize the work products of our partners towards adoption and value creation. Our goal is to: understand, support and improve the end-to-end process of (a) bringing the right individuals together, (b) collaborating and contributing their complementary expertise, and (c) making use of supporting processes and practices to create value through innovation in products and services. Within enterprise R&D organizations, our results will enable more people to be involved in the innovation process and will increase the number, quality and pace of ideas developed and disclosed. Within NCEs, our results will advance our understanding of the operating parameters of effective knowledge mobilization, translation and value creation and improve monitoring, reporting, evaluating, accountability and transparency in research networks.
如今,知识型员工在跨越不同学科和组织的大规模专家网络环境中工作,占劳动力的很大比例。他们依靠软件技术进行特定于学科的活动,以及相互之间的协调和交流。这种联网的跨学科知识工作的动机是这样一种信念,即只有通过专家和合作伙伴的广泛合作,才能有效地解决我们这个时代的复杂问题,这些专家和合作伙伴既是知识的创造者,也是知识的接受者,通过新的产品和服务创造价值。然而,尽管这一信念是普遍的,并日益得到认同,但“如何支持这些网络以提高效率”的问题仍然非常悬而未决,并成为相当大的争论的主题。我们提出的研究的目标是开发方法和工具来分析和增强数据集,知识员工通过这些数据集进行协作,我们的假设是,通过这样做,我们可以有效地提高他们的生产率。这些方法和工具将通过与我们的合作伙伴组织的案例研究进行验证:一个企业研发(R&D)组织(在戴尔计算机内)和两个加拿大研究网络(The Age-Well和GlycoNET NCE)。我们将展示我们的工具如何提高创新生产力,并帮助调动我们合作伙伴的工作产品,以实现采用和创造价值。我们的目标是:理解、支持和改进端到端流程,即(A)将合适的个人聚集在一起,(B)协作并贡献他们互补的专业知识,以及(C)利用支持流程和实践通过产品和服务创新创造价值。在企业研发组织内部,我们的成果将使更多的人参与到创新过程中来,并将提高开发和披露想法的数量、质量和速度。在国家教育委员会内部,我们的成果将促进我们对有效的知识调动、翻译和价值创造的操作参数的理解,并改善研究网络中的监测、报告、评估、问责和透明度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lyons, KellyA其他文献
Lyons, KellyA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lyons, KellyA', 18)}}的其他基金
Data Science Research & Innovation Network (DRIvE-Net) / Recherches et Innovation sur Science des donnEes - (RISE)
数据科学研究
- 批准号:
520288-2017 - 财政年份:2017
- 资助金额:
$ 18.14万 - 项目类别:
Networks of Centres of Excellence - Letters of Intent
Interaction Systems for Smarter Service Engagements
用于更智能服务参与的交互系统
- 批准号:
358322-2013 - 财政年份:2017
- 资助金额:
$ 18.14万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
- 批准号:
2324742 - 财政年份:2023
- 资助金额:
$ 18.14万 - 项目类别:
Continuing Grant
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 18.14万 - 项目类别:
Supporting data-driven decision-making to support substance use service expansion policies and to prevent overdoses
支持数据驱动的决策,以支持物质使用服务扩展政策并防止用药过量
- 批准号:
10745632 - 财政年份:2023
- 资助金额:
$ 18.14万 - 项目类别:
Moving Beyond the Individual- A Data-driven Approach to Improving the Evidence on the Role of Community and Societal Determinants of HIV among Adolescent Girls and Young Women in Sub-Saharan Africa
超越个人——采用数据驱动的方法来改善关于艾滋病毒在撒哈拉以南非洲地区少女和年轻妇女中的社区和社会决定因素的作用的证据
- 批准号:
10619319 - 财政年份:2023
- 资助金额:
$ 18.14万 - 项目类别:
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
$ 18.14万 - 项目类别:
Research and development of vector image retrieval by cooperating knowledge-driven and data-driven models
知识驱动与数据驱动模型协同的矢量图像检索研究与开发
- 批准号:
23K11121 - 财政年份:2023
- 资助金额:
$ 18.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of data driven and AI empowered systems biology to study human diseases
数据驱动和人工智能的发展使系统生物学能够研究人类疾病
- 批准号:
10714763 - 财政年份:2023
- 资助金额:
$ 18.14万 - 项目类别:
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
- 批准号:
10814620 - 财政年份:2023
- 资助金额:
$ 18.14万 - 项目类别:
Hats & Ladders for Health: Data-driven Decision-Making for Future Health Citizens and Professionals
帽子
- 批准号:
10696572 - 财政年份:2023
- 资助金额:
$ 18.14万 - 项目类别:
Implementation of a data-driven pre-hospital lay first responder program in Cameroon
在喀麦隆实施数据驱动的院前急救人员计划
- 批准号:
10805783 - 财政年份:2023
- 资助金额:
$ 18.14万 - 项目类别: