Regression Models for Data Integration in Genetics and Genomics
遗传学和基因组学数据集成的回归模型
基本信息
- 批准号:RGPIN-2015-04922
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
* * 0* 0* 1* 255* 1460* SLRI* 12* 3* 1712* 14.0* * * * *** * Normal* 0* * * * * false* false* false* * EN-US* JA* X-NONE* * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **** /* Style Definitions */*table.MsoNormalTable* {mso-style-name:"Table Normal";* mso-tstyle-rowband-size:0;* mso-tstyle-colband-size:0;* mso-style-noshow:yes;* mso-style-priority:99;* mso-style-parent:"";* mso-padding-alt:0cm 5.4pt 0cm 5.4pt;* mso-para-margin:0cm;* mso-para-margin-bottom:.0001pt;* mso-pagination:widow-orphan;* font-size:12.0pt;* font-family:Cambria;* mso-ascii-font-family:Cambria;* mso-ascii-theme-font:minor-latin;* mso-hansi-font-family:Cambria;* mso-hansi-theme-font:minor-latin;}****The general objective of the research program is to develop statistical tools to address problems in basic and translational research in human biology and complex trait analysis. I propose to develop flexible statistical models and methods of data analysis that integrate multiple sources of data, taking into account the complex dependence structures inherent in molecular biologic studies of the genetic, molecular and environmental factors responsible for differences among individuals. The advent of technologies such as microarrays, genome-wide association platforms, and next generation sequencing allows interrogation of genome-wide molecular and genetic variation among individuals, and the potential to better delineate sources of heterogeneity. The development of methodology for large-scale `omics data has generally proceeded pragmatically by focusing on one or two data dimensions at a time. The dominant paradigms have typically performed tests of single-variant or single-gene associations rather than focusing on combinations of factors. By developing, evaluating and applying regression methods that have the capacity to investigate multiple factors, we expect to gain new insight into underlying biology and the sources of differences among people.***There are three particular statistical difficulties that I propose to address. These include obstacles that arise when a complete set of measurements is not available on everyone, when the trait of interest is not evenly distributed across individuals in the population, and when the number of potential explanatory factors is very large. As part of their research training, graduate students and post-doctoral fellows in biostatistics and statistics will play an integral role in developing solutions to the problems I have posed. In addition to disseminating the results of the research to other statistical researchers, we plan to develop and provide accessible software useful to investigators in many fields.***
* * 0* 0* 1* 255* 1460* SLRI* 12* 3* 1712* 14.0* 正常 * 0* 假 * 假 * * 假 * * EN-US* JA* X-NONE* * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** /* 样式定义 */*table.MsoNormalTable* {mso-style-name:“Table Normal”;* mso-tstyle-rowband-size:0;* mso-tstyle-colband-size:0;* mso-style-noshow:yes;* mso-style-priority:99;* mso-style-parent:“";* mso-padding-alt:0cm 5.4pt 0cm 5.4pt;* mso-para-margin-bottom:0cm;* mso-para-margin-bottom:.0001pt;* mso-pagination:widow-orphan;* font-size:12.0pt;* font-family:Cambria;* mso-assign-font-family:Cambria;* mso-assign-theme-font:minor-latin;* mso-hansi-font-family:坎布里亚;* mso-hansi-theme-font:minor-latin;}* 研究计划的总体目标是开发统计工具,以解决人类生物学和复杂性状分析的基础和转化研究中的问题。我建议开发灵活的统计模型和方法的数据分析,整合多个数据源,考虑到复杂的依赖结构固有的分子生物学研究的遗传,分子和环境因素负责个体之间的差异。微阵列、全基因组关联平台和下一代测序等技术的出现允许对个体之间的全基因组分子和遗传变异进行询问,并有可能更好地描绘异质性的来源。大规模“组学”数据方法的制定通常是务实地进行的,每次侧重于一个或两个数据层面。占主导地位的范式通常进行单变量或单基因关联的测试,而不是专注于因素的组合。通过开发、评估和应用能够调查多个因素的回归方法,我们希望对潜在的生物学和人与人之间差异的来源有新的认识。我建议解决三个具体的统计困难。这些障碍包括当一套完整的测量方法无法适用于每个人时,当感兴趣的特征在人群中的个体分布不均匀时,以及当潜在的解释因素数量非常大时。作为研究培训的一部分,生物统计学和统计学的研究生和博士后研究员将在开发我提出的问题的解决方案方面发挥不可或缺的作用。除了向其他统计研究人员传播研究结果外,我们还计划开发和提供对许多领域的研究人员有用的可访问软件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bull, Shelley其他文献
Uncovering the Contribution of Moderate-Penetrance Susceptibility Genes to Breast Cancer by Whole-Exome Sequencing and Targeted Enrichment Sequencing of Candidate Genes in Women of European Ancestry.
通过全外观测序和靶向富集候选基因在欧洲血统的女性中,揭示了中等渗透率易感基因对乳腺癌的贡献。
- DOI:
10.3390/cancers14143363 - 发表时间:
2022-07-11 - 期刊:
- 影响因子:5.2
- 作者:
Dumont, Martine;Weber-Lassalle, Nana;Joly-Beauparlant, Charles;Ernst, Corinna;Droit, Arnaud;Feng, Bing-Jian;Dubois, Stephane;Collin-Deschesnes, Annie-Claude;Soucy, Penny;Vallee, Maxime;Fournier, Frederic;Lemacon, Audrey;Adank, Muriel A.;Allen, Jamie;Altmueller, Janine;Arnold, Norbert;Ausems, Margreet G. E. M.;Berutti, Riccardo;Bolla, Manjeet K.;Bull, Shelley;Carvalho, Sara;Cornelissen, Sten;Dufault, Michael R.;Dunning, Alison M.;Engel, Christoph;Gehrig, Andrea;Geurts-Giele, Willemina R. R.;Gieger, Christian;Green, Jessica;Hackmann, Karl;Helmy, Mohamed;Hentschel, Julia;Hogervorst, Frans B. L.;Hollestelle, Antoinette;Hooning, Maartje J.;Horvath, Judit;Ikram, M. Arf An;Kaulfuss, Silke;Keeman, Renske;Kuang, Da;Luccarini, Craig;Maier, Wolfgang;Martens, John W. M.;Niederacher, Dieter;Nurnberg, Peter;Ott, Claus-Eric;Peters, Annette;Pharoah, Paul D. P.;Ramirez, Alfredo;Ramser, Juliane;Riedel-Heller, Steffi;Schmidt, Gunnar;Shah, Mitul;Scherer, Martin;Stabler, Antje;Strom, Tim M.;Sutter, Christian;Thiele, Holger;van Asperen, Christi J.;van der Kolk, Lizet;van der Luijt, Rob B.;Volk, Alexander E.;Wagner, Michael;Waisfisz, Quinten;Wang, Qin;Wang-Gohrke, Shan;Weber, Bernhard H. F.;Devilee, Peter;Tavtigian, Sean;Bader, Gary D.;Meindl, Alfons;Goldgar, David E.;Andrulis, Irene L.;Schmutzler, Rita K.;Easton, Douglas F.;Schmidt, Marjanka K.;Hahnen, Eric;Simard, Jacques - 通讯作者:
Simard, Jacques
Hierarchical modeling identifies novel lung cancer susceptibility variants in inflammation pathways among 10,140 cases and 11,012 controls.
- DOI:
10.1007/s00439-013-1270-y - 发表时间:
2013-05 - 期刊:
- 影响因子:5.3
- 作者:
Brenner, Darren R.;Brennan, Paul;Boffetta, Paolo;Amos, Christopher I.;Spitz, Margaret R.;Chen, Chu;Goodman, Gary;Heinrich, Joachim;Bickeboeller, Heike;Rosenberger, Albert;Risch, Angela;Muley, Thomas;McLaughlin, John R.;Benhamou, Simone;Bouchardy, Christine;Lewinger, Juan Pablo;Witte, John S.;Chen, Gary;Bull, Shelley;Hung, Rayjean J. - 通讯作者:
Hung, Rayjean J.
Bull, Shelley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bull, Shelley', 18)}}的其他基金
Integrative Statistical Modelling in Genetics and Genomics
遗传学和基因组学的综合统计模型
- 批准号:
RGPIN-2020-05896 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Integrative Statistical Modelling in Genetics and Genomics
遗传学和基因组学的综合统计模型
- 批准号:
RGPIN-2020-05896 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Integrative Statistical Modelling in Genetics and Genomics
遗传学和基因组学的综合统计模型
- 批准号:
RGPIN-2020-05896 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Regression Models for Data Integration in Genetics and Genomics
遗传学和基因组学数据集成的回归模型
- 批准号:
RGPIN-2015-04922 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Regression Models for Data Integration in Genetics and Genomics
遗传学和基因组学数据集成的回归模型
- 批准号:
RGPIN-2015-04922 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Regression Models for Data Integration in Genetics and Genomics
遗传学和基因组学数据集成的回归模型
- 批准号:
RGPIN-2015-04922 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Regression Models for Data Integration in Genetics and Genomics
遗传学和基因组学数据集成的回归模型
- 批准号:
RGPIN-2015-04922 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Regression models for genetic and genomic data
遗传和基因组数据的回归模型
- 批准号:
9242-2009 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Regression models for genetic and genomic data
遗传和基因组数据的回归模型
- 批准号:
9242-2009 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Regression models for genetic and genomic data
遗传和基因组数据的回归模型
- 批准号:
9242-2009 - 财政年份:2011
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Inference and computational methods for regression models in the presence of partially observed network data or high-dimensional capture-recapture data
存在部分观察到的网络数据或高维捕获-重捕获数据的回归模型的推理和计算方法
- 批准号:
RGPIN-2022-03309 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Inference and computational methods for regression models in the presence of partially observed network data or high-dimensional capture-recapture data
存在部分观察到的网络数据或高维捕获-重捕获数据的回归模型的推理和计算方法
- 批准号:
DGECR-2022-00441 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Launch Supplement
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Regression models for directional data
方向数据的回归模型
- 批准号:
20K03759 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
A comparison of regression models for compositional data with zeros in relation to QFASA
与 QFASA 相关的零成分数据回归模型的比较
- 批准号:
539985-2019 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
University Undergraduate Student Research Awards
Regression Models for Data Integration in Genetics and Genomics
遗传学和基因组学数据集成的回归模型
- 批准号:
RGPIN-2015-04922 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Estimation and Inference of Regression Models in Which Two Data Sets Are Combined
组合两个数据集的回归模型的估计和推断
- 批准号:
19K01595 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




