Stochastic and Mathematical Structures from and for Financial Economics

金融经济学中的随机和数学结构

基本信息

  • 批准号:
    RGPIN-2014-04987
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

My research proposal consists of four projects with equal merit with regard to significance. For these projects, my main goal lies in building new stochastic notions/concepts/tools and developing the stochastic/mathematical structures induced by the economical and financial phenomena/assumptions/behaviors. **The first topic addresses the horizon-dependence in optimal portfolio and/or optimal consumption. It was known, since the thirties of the last century, that the length of the horizon has a tremendous impact on investment and consumption due to many human and social reasons. In his book on general risk income, Irving Fisher wrote: "The sailor or the soldier who looks forward to a short existence will be less likely to make permanent investments.... Only a low price, that is, a high rate of interest, will induce him to invest for long ahead". In this project, I propose to continue my work on this issue in order to single out as explicitly as possible how the horizon's length affects the optimal portfolio choice and the optimal consumption. This will allow us to better address/face other horizon-related risks such as default, death and credit risk.**My second project focuses on informational markets and their regulations. In real world, the US government forbids insider trading, while the economic literature suggests regulating the asymmetric information through taxes and fees. In this project, I propose to investigate the interplay between the information and the market's efficiency when the transaction costs are in-force. This will enhance our understanding of these markets in order to design adequate transaction costs/taxes regimes that will restore the efficiency in markets with asymmetric information. These projected results will be supported by solid stochastic and mathematical arguments, and will strengthen the existing economical ideas about the informational markets in the areas of political economy, public economy and decision making.**The third main project deals with habit formation utilities, where I will focus on understanding the effect of the social behaviors (such as habit, addiction, greed, fear,..., etcetera) on the consumer. I am planning to develop innovative stochastic tools that will quantify the effect of these social/human behaviors.**The fourth project is concerned with behavioral finance/economics. The Expected Utility Theory (EUT), which is based on the von Neumann and Morgenstern axioms, fails to explain human emotions/psychology and many paradoxes and puzzles (such as the Allais paradox, the Ellesberg paradox and the equity premium puzzle). Thus, many economists proposed alternatives to the EUT which (are supported by empirical studies and) include Prospect Theory, Security Potential/Aspiration Theory and Dual Theory of Choice. Due to the lack of global concavity in the utility function (which takes the S shape in some context for instance), all the mathematical approaches designed for the EUT fail in these behavioral frameworks. My projected contribution in this theme lies in producing new stochastic concepts and/or reliable mathematical methods for explaining these behavioral models and their impacts as well.
我的研究提案包括四个在意义上具有同等价值的项目。对于这些项目,我的主要目标是构建新的随机概念/概念/工具,并开发由经济和金融现象/假设/行为诱导的随机/数学结构。**第一个主题涉及最优投资组合和/或最优消费中的水平依赖关系。自上世纪30年代以来,人们就知道,由于许多人类和社会原因,地平线的长短对投资和消费有巨大影响。欧文·费舍尔在他的《一般风险收益》一书中写道:“期待短暂生存的水手或士兵将不太可能进行永久性投资……只有低价格,即高利率,才会诱使他进行长期投资。”在这个项目中,我建议继续我在这个问题上的工作,以便尽可能明确地挑出地平线的长度如何影响最优投资组合选择和最优消费。这将使我们能够更好地应对/面对其他与前景相关的风险,如违约、死亡和信用风险。**我的第二个项目侧重于信息市场及其监管。在现实世界中,美国政府禁止内幕交易,而经济文献则建议通过税收和收费来监管信息不对称。在这个项目中,我建议研究当交易成本有效时,信息与市场效率之间的相互作用。这将增进我们对这些市场的了解,以便设计适当的交易成本/税收制度,恢复信息不对称市场的效率。这些预测的结果将得到坚实的随机和数学论证的支持,并将在政治经济学、公共经济学和决策领域加强关于信息市场的现有经济学观点。**第三个主要项目涉及习惯形成实用程序,其中我将重点了解社会行为(如习惯、上瘾、贪婪、恐惧等)对消费者的影响。我计划开发创新的随机工具,将这些社会/人类行为的影响量化。**第四个项目与行为金融学/经济学有关。建立在冯·诺伊曼和摩根斯坦公理基础上的期望效用理论未能解释人类的情感/心理以及许多悖论和谜题(如阿莱悖论、埃莱斯伯格悖论和股权溢价之谜)。因此,许多经济学家提出了替代欧盟技术的方案,这些方案得到了实证研究的支持,包括前景理论、安全潜力/期望理论和双重选择理论。由于效用函数缺乏全局凹性(例如,效用函数在某些情况下呈S形状),所有为EUT设计的数学方法都在这些行为框架下失败。我在这个主题中预计的贡献在于产生新的随机概念和/或可靠的数学方法来解释这些行为模型及其影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Choulli, Tahir其他文献

Choulli, Tahir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Choulli, Tahir', 18)}}的其他基金

Informational markets: Risk modelling, risk management and portfolio analysis
信息市场:风险建模、风险管理和投资组合分析
  • 批准号:
    RGPIN-2019-04779
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Informational markets: Risk modelling, risk management and portfolio analysis
信息市场:风险建模、风险管理和投资组合分析
  • 批准号:
    RGPIN-2019-04779
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Informational markets: Risk modelling, risk management and portfolio analysis
信息市场:风险建模、风险管理和投资组合分析
  • 批准号:
    RGPIN-2019-04779
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Informational markets: Risk modelling, risk management and portfolio analysis
信息市场:风险建模、风险管理和投资组合分析
  • 批准号:
    RGPIN-2019-04779
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic and Mathematical Structures from and for Financial Economics
金融经济学中的随机和数学结构
  • 批准号:
    RGPIN-2014-04987
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic and Mathematical Structures from and for Financial Economics
金融经济学中的随机和数学结构
  • 批准号:
    RGPIN-2014-04987
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic and Mathematical Structures from and for Financial Economics
金融经济学中的随机和数学结构
  • 批准号:
    RGPIN-2014-04987
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic and Mathematical Structures from and for Financial Economics
金融经济学中的随机和数学结构
  • 批准号:
    RGPIN-2014-04987
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic tools for financial economics
金融经济学的随机工具
  • 批准号:
    249736-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic tools for financial economics
金融经济学的随机工具
  • 批准号:
    249736-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
Pseudorandom numbers and algebraic studies on related mathematical structures
伪随机数及相关数学结构的代数研究
  • 批准号:
    23K03033
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
WILDMOD: Model Theory of wild mathematical structures, new perspectives via geometries and positive logic.
WILDMOD:狂野数学结构的模型理论,通过几何和正逻辑的新视角。
  • 批准号:
    EP/Y027833/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Fellowship
Information Coded in Mathematical Structures
以数学结构编码的信息
  • 批准号:
    2419591
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Study of deformation mechanism and mechanical properties of bundle structures based on collaboration between condensed matter physics and mathematical morphology
基于凝聚态物理与数学形态学协同的束结构变形机制与力学性能研究
  • 批准号:
    23H01299
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Geometrical structures in mathematical physics
数学物理中的几何结构
  • 批准号:
    RGPIN-2018-05413
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Information Coded in Mathematical Structures
以数学结构编码的信息
  • 批准号:
    2153823
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Higher structures in generalized geometry and mathematical physics
广义几何和数学物理中的高等结构
  • 批准号:
    RGPIN-2018-04349
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and Computational Modeling of Interaction between Fluids and Poroelastic Structures
流体与多孔弹性结构之间相互作用的数学和计算模型
  • 批准号:
    2111129
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Development of Mathematical Planktology by the Analysis of Their Skeletal Structures Using Computational Geometry
通过使用计算几何分析其骨骼结构来发展数学浮游生物学
  • 批准号:
    21K03376
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了