Stability of coherent structures in evolutionary partial differential equations: a geometric approach

演化偏微分方程中相干结构的稳定性:几何方法

基本信息

  • 批准号:
    RGPIN-2017-04259
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Most continuously evolving physical processes can be described by differential equations. Examples include water waves, biological populations, interacting atoms and molecules, and the constituents of a chemical reaction. In any such system a distinguished role is played by steady states—solutions that do not change in time because all external forces are in perfect equilibrium. It is important to know whether such states are stable, in the sense that small perturbations to the initial condition or external forces will eventually fade away, or unstable, meaning the perturbations will be amplified exponentially and lead to radically different behaviour in the long run. For this reason it is typically only the stable states that can be observed in nature, or physically realized in a laboratory setting, so it is important to identify them and understand what properties lead to their stability.******The ultimate goal is to predict a state's stability from its general shape and structure, and to determine what properties are indicative of instability. A classical problem describes a signal propagating in one dimension (such as light traveling along an optical fibre, or an electrical impulse in a neuron). In this case it is known that a pulse solution (which looks like a small bump moving along the fibre) is unstable, whereas a front (which is shaped like a cliff or a step) is stable. The difference between the two is that the pulse has a local maximum while the front does not, and this is enough to distinguish stability from instability.******When the problem involves multiple spatial dimension (as all real physical systems do), it is much more difficult, and results from the one-dimensional case no longer apply. The proposed research addresses this shortcoming by simultaneously developing two different tools for higher-dimensional problems: 1) the Maslov index; and 2) the Evans function. Both methods are well understood in the one-dimensional context, but have only recently begun to receive attention in a more general setting. Thus the proposed research is likely to have a strong impact on both the mathematical and physical sciences, with theoretical advancements allowing for new applications to problems in fluid dynamics, materials science and nonlinear optics, to name just a few examples.******These new theoretical tools will be advanced through the consideration of a large, robust family of physical applications. Student researchers will have the opportunity to communicate with scientists in related disciplines to determine the most important applications of these methods, and guide their efforts accordingly. As a result, the work outlined in the proposal will effectively train these researchers not just as mathematicians, but as active, productive members of the general scientific community, and as such will promote the development of innovative new scientific methods in Canada.
大多数连续演化的物理过程可以用微分方程来描述。例子包括水波、生物种群、相互作用的原子和分子以及化学反应的成分。在任何这样的系统中,稳态都扮演着重要的角色——由于所有外力都处于完美平衡,因此不会随时间变化的解决方案。重要的是要知道这些状态是否稳定,即对初始条件或外力的微小扰动最终会消失,或者不稳定,这意味着扰动将呈指数级放大,并从长远来看导致完全不同的行为。因此,通常只有稳定状态才能在自然界中观察到,或在实验室环境中物理实现,因此识别它们并了解哪些属性导致其稳定性非常重要。******最终目标是从状态的一般形状和结构预测其稳定性,并确定哪些属性表明不稳定。一个经典问题描述在一维中传播的信号(例如沿着光纤传播的光,或神经元中的电脉冲)。在这种情况下,我们知道脉冲解(看起来像沿着光纤移动的小凸起)是不稳定的,而前沿(形状像悬崖或台阶)是稳定的。两者之间的区别在于,脉冲具有局部最大值,而前沿没有,这足以区分稳定性和不稳定。 *****当问题涉及多个空间维度时(就像所有真实的物理系统一样),它就困难得多,并且一维情况的结果不再适用。拟议的研究通过同时开发两种不同的工具来解决高维问题来解决这一缺点:1)马斯洛夫指数; 2)埃文斯函数。这两种方法在一维环境中都得到了很好的理解,但最近才开始在更一般的环境中受到关注。因此,拟议的研究可能会对数学和物理科学产生重大影响,理论进步允许在流体动力学、材料科学和非线性光学等问题上有新的应用,仅举几个例子。******这些新的理论工具将通过考虑大量、强大的物理应用而得到推进。学生研究人员将有机会与相关学科的科学家进行交流,以确定这些方法最重要的应用,并相应地指导他们的工作。因此,提案中概述的工作将有效地培训这些研究人员,使其不仅成为数学家,而且成为整个科学界积极、富有成效的成员,从而促进加拿大创新科学方法的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cox, Graham其他文献

Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map
节点缺陷、谱流和狄利克雷到诺依曼图
  • DOI:
    10.1007/s11005-019-01159-x
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Berkolaiko, Gregory;Cox, Graham;Marzuola, Jeremy L.
  • 通讯作者:
    Marzuola, Jeremy L.
Modification of a Method for Diagnosing Noise-Induced Hearing Loss Sustained During Military Service.
  • DOI:
    10.1177/23312165221145005
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Moore, Brian C. J.;Humes, Larry E.;Cox, Graham;Lowe, David;Gockel, Hedwig E.
  • 通讯作者:
    Gockel, Hedwig E.
Characterizing potential surface topographies through the distribution of saddles and minima
  • DOI:
    10.1021/jp0630572
  • 发表时间:
    2006-10-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Cox, Graham;Berry, R. Stephen;Johnston, Roy L.
  • 通讯作者:
    Johnston, Roy L.
Guidelines for Diagnosing and Quantifying Noise-Induced Hearing Loss.
  • DOI:
    10.1177/23312165221093156
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Moore, Brian C. J.;Lowe, David A.;Cox, Graham
  • 通讯作者:
    Cox, Graham
A dynamical approach to semilinear elliptic equations
半线性椭圆方程的动力学方法
  • DOI:
    10.1016/j.anihpc.2020.08.001
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Beck, Margaret;Cox, Graham;Jones, Christopher;Latushkin, Yuri;Sukhtayev, Alim
  • 通讯作者:
    Sukhtayev, Alim

Cox, Graham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cox, Graham', 18)}}的其他基金

Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
  • 批准号:
    RGPIN-2017-04259
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
  • 批准号:
    RGPIN-2017-04259
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
  • 批准号:
    RGPIN-2017-04259
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
  • 批准号:
    RGPIN-2017-04259
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
  • 批准号:
    RGPIN-2017-04259
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

李超代数的表示和仿射李代数的VCS表示及双代数结构
  • 批准号:
    10901028
  • 批准年份:
    2009
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
Non-coherent网络中的纠错码及其应用
  • 批准号:
    60972011
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
李超代数及仿射李代数的VCS表示
  • 批准号:
    10826094
  • 批准年份:
    2008
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
磁层重联区相干结构动力学过程的观测研究
  • 批准号:
    40574067
  • 批准年份:
    2005
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
  • 批准号:
    2312994
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
The role of turbulent coherent structures on the evolving seabed
湍流相干结构对海底演化的作用
  • 批准号:
    2242113
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Influences of Coherent Structures on Validity of the Constant Flux Layer Assumptions in the Unstable Atmospheric Surface Layer
不稳定大气表层相干结构对恒定通量层假设有效性的影响
  • 批准号:
    2325687
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
  • 批准号:
    2312995
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercell Left Flank Boundaries and Coherent Structures--Targeted Observations by Radars and UAS of Supercells Left-flank-Intensive Experiment (TORUS-LItE)
合作研究:超级单元左翼边界和相干结构——雷达和无人机对超级单元左翼密集实验(TORUS-LItE)的定向观测
  • 批准号:
    2312996
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
  • 批准号:
    RGPIN-2017-04259
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Stabilisation of exact coherent structures in fluid turbulence
流体湍流中精确相干结构的稳定性
  • 批准号:
    EP/S037055/2
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Research Grant
Coherent Structures in Complex Sheared Flows
复杂剪切流中的相干结构
  • 批准号:
    RGPIN-2020-05122
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Automated physics-based distillation of coherent structures and mechanisms in unsteady and turbulent flows
职业:基于物理的自动蒸馏非定常和湍流中的相干结构和机制
  • 批准号:
    2238770
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Continuing Grant
Superconducting coherent structures for next generation quantum technology
用于下一代量子技术的超导相干结构
  • 批准号:
    2749495
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了