Multivariate Prediction of Package Delivery Time

包裹递送时间的多变量预测

基本信息

  • 批准号:
    530923-2018
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Delivery of packages is a critical concept for e-commerce and many online stores that deliver merchandise and**goods to consumers. The expected time of delivery is an important factor for vendors and customers alike. The**time of package delivery often depends on a variety of parameters, ranging from the number of packages to be**delivered, the availability of staff and resources, and the distance of the destination to the warehouse, to weather**and road conditions. As a result, exact prediction of time of delivery is often difficult and subject to change based**on these highly variable parameters. This project aims to address this problem and develop machine learning**models based on existing multi-modal data from package shipments, traffic, and weather data, to predict package**delivery times with high confidence. Innovapost is part of The Canada Post Group of Companies, a multi billion**dollar Enterprise, which develops and oversees the entire technical and analytical IT infrastructure for Canada**Post. This project will allow the company to utilize the developed methods to inform recipients of a window for**day/time of delivery with high confidence and be able to update the estimation with changes in the parameters in**real-time. Such an accurate service will result in higher satisfaction rates by customers, which will result in**financial growth by the company and eventually Canada Post.
包裹递送对于电子商务和许多向消费者递送商品和**商品的在线商店来说是一个关键的概念。对于供应商和客户来说,预期交货时间都是一个重要因素。包裹递送的**时间通常取决于各种参数,从要**递送的包裹数量、人员和资源的可用性、目的地到仓库的距离,到天气**和路况。因此,准确预测交货时间通常很困难,而且可能会根据这些高度可变的参数**进行更改。该项目旨在解决这一问题,并基于现有的来自包裹发货、交通和天气数据的多模式数据开发机器学习**模型,以高置信度预测包裹**递送时间。InnoVapost是加拿大邮政集团公司的一部分,该集团公司是一家价值数十亿美元的企业,为加拿大邮政开发和监督整个技术和分析IT基础设施。该项目将允许该公司利用开发的方法,以高度可信的方式通知收件人**交付日期/时间的窗口,并能够**实时地根据参数的变化更新估计。这样准确的服务将导致客户更高的满意率,这将导致**公司和最终加拿大邮政的财务增长。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Etemad, Ali其他文献

Generalized EMG-based isometric contact force estimation using a deep learning approach
  • DOI:
    10.1016/j.bspc.2021.103012
  • 发表时间:
    2021-07-28
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Hajian, Gelareh;Etemad, Ali;Morin, Evelyn
  • 通讯作者:
    Morin, Evelyn
Self-Supervised ECG Representation Learning for Emotion Recognition
GENOTYPING OF GATA4 GENE VARIANT (G296S) IN MALAYSIAN CONGENITAL HEART DISEASE SUBJECTS BY REAL-TIME PCR HIGH RESOLUTION MELTING ANALYSIS
  • DOI:
    10.2478/jomb-2013-0006
  • 发表时间:
    2013-04-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Fawzi, Nora;Vasudevan, Ramachandran;Etemad, Ali
  • 通讯作者:
    Etemad, Ali
Unsupervised multi-modal representation learning for affective computing with multi-corpus wearable data
Toward Dynamically Adaptive Simulation: Multimodal Classification of User Expertise Using Wearable Devices
  • DOI:
    10.3390/s19194270
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Ross, Kyle;Sarkar, Pritam;Etemad, Ali
  • 通讯作者:
    Etemad, Ali

Etemad, Ali的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Etemad, Ali', 18)}}的其他基金

Towards Ambient Affective Intelligence and Interaction in Smart Environments
迈向智能环境中的环境情感智能和交互
  • 批准号:
    RGPIN-2018-04186
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Using Real-time Facial Recognition for Vehicle Driver Authentication
使用实时面部识别进行车辆驾驶员身份验证
  • 批准号:
    537221-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Using Real-time Facial Recognition for Vehicle Driver Authentication
使用实时面部识别进行车辆驾驶员身份验证
  • 批准号:
    537221-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Smart meeting room: ubiquitous speech recognition and analysis of mental states of attendees in meetings**
智能会议室:无处不在的语音识别和与会者心理状态分析**
  • 批准号:
    533919-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
  • 批准号:
    2406511
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
  • 批准号:
    24K03872
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
  • 批准号:
    24K07131
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
  • 批准号:
    24K07230
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
  • 批准号:
    10102692
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    EU-Funded
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
  • 批准号:
    10103541
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    EU-Funded
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了