Computational problems in spatially-extended discrete dynamical systems

空间扩展离散动力系统中的计算问题

基本信息

  • 批准号:
    RGPIN-2015-04623
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

A complex system is typically characterized as being composed of a large number of elements whose interactions are non-linear.  One of the most interesting problems in the theory of complex systems is the complexity engineering problem, which calls for designing a complex system to perform a particular task. The main objective of the proposed research is to develop methods for designing discrete, spatially extended dynamical systems that can perform one of the simplest computational tasks, namely classifying initial configurations with respect to some given property.***The motivation for this research is the density classification task, one of the most widely studied computational problems in the theory of cellular automata. Cellular automaton (CA) performing these tasks has two fixed points, one consisting of all zeros and the other, consisting of all ones. We will call these fixed points uniform. If the density of the initial configuration is less than 0.5, the automaton should converge to the first uniform fixed point (all zeros); if the density is greater than 0.5, is should converge to the second one (all ones). Although it is known that no binary CA can perform this task with 100% accuracy, many approximate solutions have been constructed. Moreover, perfect solutions involving more than one CA rule have been proposed, including two-rule solution designed by the author. Following this idea, we will study computation in multi-rule deterministic and probabilistic cellular automata, search for systems that can compute global quantities, study their dynamics in detail, discover mechanisms by which they compute, and ultimately develop methods for constructing cellular automata based systems that perform specific computations. ****The first part of the project will be the systematic study of binary CA, in order to describe and catalogue basins of attraction of their uniform fixed points. We will identify CA in which basins of attraction of uniform fixed points are particularly large, and we will study the structure of these basins, attempting to describe them formally. ***In subsequent stages, we will search for rules that have additive invariants and that have attractors in basins of attractions of uniform fixed points of rules discovered earlier. This will yield pairs of rules classifying initial configurations with respect to some property that can be described on terms of numbers of occurrences of words of finite length. We will analyze dynamics of such pairs in detail attempting to build their general theory. The theory will then be used to reverse the aforementioned process - that is, starting from the desired property, to build multi-rule dynamical system classifying configurations with respect to this property.***Further ahead, we will extend the above to probabilistic rules and to nonregular topologies. **
复杂系统的典型特征是由大量相互作用非线性的元素组成,复杂性工程问题是复杂系统理论中最有趣的问题之一,它要求设计一个复杂系统来执行特定的任务。拟议研究的主要目标是开发设计离散的空间扩展动力系统的方法,这些系统可以执行最简单的计算任务之一,即根据某些给定属性对初始配置进行分类。这项研究的动机是密度分类任务,在细胞自动机理论中研究最广泛的计算问题之一。执行这些任务的元胞自动机(CA)有两个不动点,一个由全0组成,另一个由全1组成。我们称这些不动点为一致不动点。如果初始配置的密度小于0.5,自动机应该收敛到第一个一致不动点(全零);如果密度大于0.5,它应该收敛到第二个一致不动点(全一)。虽然它是已知的,没有二进制CA可以执行这个任务的100%的准确性,许多近似的解决方案已经构建。此外,已经提出了涉及多个CA规则的完美解决方案,包括作者设计的两规则解决方案。遵循这一思想,我们将研究多规则确定性和概率性细胞自动机的计算,寻找可以计算全局量的系统,详细研究它们的动态,发现它们计算的机制,并最终开发用于构建基于细胞自动机的系统的方法,执行特定的计算。* 该项目的第一部分将是二元CA的系统研究,以描述和编目其一致不动点的吸引域。我们将确定CA中的一致不动点的吸引盆地特别大,我们将研究这些盆地的结构,试图正式描述它们。* 在随后的阶段中,我们将搜索具有加法不变量的规则,并且在之前发现的规则的一致不动点的吸引盆中具有吸引子。这将产生对初始配置进行分类的规则对,这些初始配置相对于可以根据有限长度的单词的出现次数来描述的某些属性。我们将详细分析这种对的动力学,试图建立它们的一般理论。然后,该理论将被用来逆转上述过程-也就是说,从所需的属性开始,建立多规则动态系统,根据该属性对配置进行分类。进一步地,我们将把上面的扩展到概率规则和非正则拓扑。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fuks, Henryk其他文献

Fuks, Henryk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fuks, Henryk', 18)}}的其他基金

Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
  • 批准号:
    RGPIN-2015-04623
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
  • 批准号:
    RGPIN-2015-04623
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
  • 批准号:
    RGPIN-2015-04623
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
  • 批准号:
    RGPIN-2015-04623
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
  • 批准号:
    RGPIN-2015-04623
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Large complex graphs in discrete dynamical systems
离散动力系统中的大型复杂图
  • 批准号:
    238396-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Large complex graphs in discrete dynamical systems
离散动力系统中的大型复杂图
  • 批准号:
    238396-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Large complex graphs in discrete dynamical systems
离散动力系统中的大型复杂图
  • 批准号:
    238396-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Large complex graphs in discrete dynamical systems
离散动力系统中的大型复杂图
  • 批准号:
    238396-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Large complex graphs in discrete dynamical systems
离散动力系统中的大型复杂图
  • 批准号:
    238396-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
  • 批准号:
    RGPIN-2015-04623
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
  • 批准号:
    RGPIN-2015-04623
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Particle Filter Performance in Spatially-Extended Problems Using Generalized Random Field Likelihoods
使用广义随机场似然提高空间扩展问题中的粒子滤波器性能
  • 批准号:
    1821074
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Continuing Grant
Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
  • 批准号:
    RGPIN-2015-04623
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
  • 批准号:
    RGPIN-2015-04623
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Computational problems in spatially-extended discrete dynamical systems
空间扩展离散动力系统中的计算问题
  • 批准号:
    RGPIN-2015-04623
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and global behavior of spatially periodic solutions to the initial value problems for nonlinear dispersive equations
非线性色散方程初值问题空间周期解的存在性和全局行为
  • 批准号:
    24740086
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
U.S.-Poland Workshop on the Modeling, Analysis, and Simulation of Spatially Heterogeneous Ecological and Epidemiological Problems
美国-波兰空间异质生态和流行病学问题建模、分析和模拟研讨会
  • 批准号:
    9802770
  • 财政年份:
    1998
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Models and Model Checking for Spatially-Varying Environmental Hazards and Decision Problems
空间变化环境危害和决策问题的模型和模型检查
  • 批准号:
    9708424
  • 财政年份:
    1997
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Low-order approximations for large-scale problems arising in the context of high-dimensional PDEs and spatially discretized SPDEs
高维 PDE 和空间离散 SPDE 背景下出现的大规模问题的低阶近似
  • 批准号:
    499366908
  • 财政年份:
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了